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Foreword

The general theory of relativity, as formulated by Albert Einstein in 1915,
provided an astoundingly original perspective on the physical nature of grav-
itation, showing that it could be understood as a feature of a curvature in
the four-dimensional continuum of space-time. Now, some 90 years later, this
extraordinary theory stands in superb agreement with observation, provid-
ing a profound accord between the theory and the actual physical behavior
of astronomical bodies, which sometimes attains a phenomenal precision (in
one case to about one part in one hundred million million, where several dif-
ferent non-Newtonian effects, including the emission of gravitational waves,
are convincingly confirmed). Einstein’s tentative introduction, in 1917, of an
additional term in his equations, specified by a “cosmological constant”, ap-
pears now to be observationally demanded, and with this term included, there
is no discrepancy known between Einstein’s theory and classical dynamical
behavior, from meteors to matter distributions at the largest cosmological
scales. One of Einstein’s famous theoretical predictions that light is bent in
a gravitational field (which had been only roughly confirmed by Eddington’s
solar eclipse measurements at the Island of Principe in 1919, but which is now
very well established) has become an important tool in observational cosmol-
ogy, where gravitational lensing now provides a unique and direct means of
measuring the mass of very distant objects.

But long before general relativity and cosmology had acquired this im-
pressive observational status, these areas had provided a prolific source of
mathematical inspiration, particularly in differential geometry and the the-
ory of partial differential equations (where sometimes this had been applied
to situations in which the number of space-time dimensions differs from the
four of direct application to our observed space-time continuum). As we see
from several of the articles in this book, there is still much activity in all
these mathematical areas, in addition to other areas which have acquired
importance more recently. Most particularly, the interest in black holes, with
their horizons, their singularities, and their various other remarkable proper-
ties, both theoretical and in relation to observed highly dramatic astronom-
ical phenomena, has also stimulated much important research. Some have
interesting mathematical implications, involving particular types of mathe-
matical argumentations, such as the involvement of differential topology and
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the study of families of geodesics, and some having relevance to deep foun-
dational issues relating to quantum theory and thermodynamics. We find a
good representation of these discussions here. Some distinct progress in the
study of asymptotically flat space-times is also reported here, which greatly
clarifies the issue of what can and cannot be achieved using the method of
conformal compactification.

In addition to (and sometimes in conjunction with) such purely mathe-
matical investigation, there is a large and important body of technique that
has grown up, which has been made possible by the astonishing development
of electronic computer technology. Enormous strides in the computer simula-
tion of astrophysical processes have been made in recent years, and this has
now become an indispensable tool in the study of gravitational dynamics,
in accordance with Einstein’s general relativity (such as with the study of
black-hole collision that will form an essential part of the analysis of the sig-
nals that are hoped to be detected, before too long, by the new generations
of gravitational wave detectors). Significant issues of numerical analysis in-
evitably arise in conjunction with the actual computational procedures, and
issues of this nature are also well represented in the accounts presented here.

It will be seen from these articles that research into general relativity is
a thoroughly thriving activity, and it is evident that this will continue to be
the case for a good many years to come.

July, 2005 Roger Penrose



Preface

Recent years have witnessed a tremendous improvement in the experimental
verification of general relativity. Current experimental activities substantially
outrange those of the past in terms of technology, manpower and, last but
not least, money. They include earthbound satellite tests of weak-gravity
effects, like gravitomagnetism in the Gravity-Probe-B experiment, as well
as strong-gravity observations on galactic binary systems, including pulsars.
Moreover, currently four large international collaborations set out to directly
detect gravitational waves, and recent satellite observations of the microwave
background put the science of cosmology onto a new level of precision.

All this is truly impressive. General relativity is no longer a field solely for
pure theorists living in an ivory tower, as it used to be. Rather, it now ranges
amongst the most accurately tested fundamental theories in all of physics.
Although this success naturally fuels the motivation for a fuller understand-
ing of the computational aspects of the theory, it also bears a certain danger
to overhear those voices that try to point out certain, sometimes subtle, defi-
ciencies in our mathematical and conceptual understanding. The point being
expressed here is that, strictly speaking, a theory-based prediction should be
regarded as no better than one’s own structural understanding of the under-
lying theory. To us there seems to be no more sincere way to honor Einstein’s
“annus mirabilis” (1905) than to stress precisely this – his – point!

Accordingly, the purpose of the 319th WE-Heraeus Seminar “Mathe-
matical Relativity: New Ideas and Developments”, which took place at the
Physikzentrum in Bad Honnef (Germany) from March 1 to 5, 2004, was to
provide a platform to experts in Mathematical Relativity for the discussion
of new ideas and current research, and also to give a concise account of its
present state. Issues touching upon quantum gravity were deliberately not
included, as this was the topic of the 271st WE-Heraeus Seminar in 2002
(published as Vol. 631 in the LNP series). We broadly categorized the top-
ics according to their mathematical habitat: (i) differential geometry and
differential topology, (ii) analytical methods and differential equations, and
(iii) numerical methods. The seminar comprised invited one-hour talks and
contributed half-hour talks. We are glad that most of the authors of the one-
hour talks followed our invitation to present written versions for this volume.



VIII Preface

We believe that the account given here is representative and of a size that is
not too discouraging for students and non-experts.

Last but not least we sincerely thank the Wilhelm-and-Else-Hereaeus-
Foundation for its generous support, without which the seminar on Mathe-
matical Relativity would not have been possible and this volume would not
have come into existence.

Tübingen - Freiburg - Berlin Jörg Frauendiener
July, 2005 Domenico Giulini

Volker Perlick
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Topoloǵıa, Facultad de Ciencias
Universidad de Granada
Avenida Fuentenueva s/n
E-18071 Granada, Spain
sanchezm@ugr.es

Olivier Sarbach
Department of Physics
& Astronomy
Louisiana State University
Baton Rouge
LA 70803
USA
and
Theoretical Astrophysics 130-33
California Institute of Technology
Pasadena, CA 91125
USA
sarbach@phys.lsu.edu
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A Personal Perspective
on Global Lorentzian Geometry

Paul E. Ehrlich

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105,
USA
ehrlich@math.ufl.edu

Dedicated to Professor John K. Beem on the occasion of his retirement from
the University of Missouri–Columbia.

Abstract. A selected survey is given of aspects of global space-time geometry from
a differential geometric perspective that were germane to the First and Second
Editions of the monograph Global Lorentzian Geometry and beyond.

1 Introduction

Any student of Riemannian geometry is exposed to a wonderful global result
and basic working tool, which goes back to Hopf and Rinow [55]. If (N, g0)
is a Riemannian manifold, then an associated Riemannian distance function
d0 : N ×N → R is given by

d0(p, q) = inf{L(c) | c : [0, 1] → N is a piecewise
smooth curve with c(0) = p, c(1) = q} .

(1)

Then the promised result guarantees the equivalence of the following condi-
tions:

Theorem 1. (Hopf–Rinow Theorem) For any Riemannian manifold (N, g0),
the following are equivalent:

(1) metric completeness: (N, d0) is a complete metric space;
(2) geodesic completeness: for any v ∈ TN , the geodesic cv(t) in N with

initial condition cv
′(0) = v is defined for all values of an affine parameter

t;
(3) for some point p ∈ N , the exponential map expp is defined on all of TpN ;
(4) finite compactness: every subset K of N that is d0-bounded has compact

closure.

Moreover, if any one of (1) through (4) holds, then (N, g0) also satisfies

(5) minimal geodesic connectability: given any p, q ∈ N , there exists a
smooth geodesic segment c : [0, 1] → N with c(0) = p, c(1) = q, and
L(c) = d0(p, q).

P.E. Ehrlich: A Personal Perspective on Global Lorentzian Geometry, Lect. Notes Phys. 692,
3–34 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



4 P.E. Ehrlich

Finally, the Heine–Borel property of basic topology implies (via (4)) that all
Riemannian metrics for a compact manifold are automatically complete. Also,
the basic examples that one introduces in a beginning Riemannian geometry
course, such as Sn, RPn, R

n, and Tn, all carry complete Riemannian metrics
as usually described. From one viewpoint, one may regard the Hopf–Rinow
Theorem as asserting that complete Riemannian metrics are the proper ob-
jects of study in the global differential geometry of Riemannian manifolds.

In a somewhat related vein, thanks to (1) of the Hopf–Rinow Theorem,
it is well known that if the space of all Riemannian metrics Riem(N) for a
fixed smooth manifold N is considered, then

both geodesic completeness and

geodesic incompleteness are C0-stable in Riem(N) .
(2)

An elementary proof may be found in [14].
Now if we leave the Riemannian world and enter the realm of General

Relativity, then unlike the basic complete or compact examples explained
in elementary Riemannian geometry courses, we first find that several basic
examples such as Schwarzschild space-time and the big bang cosmological
models are nonspacelike geodesically incomplete. Moreover, in the 1970s at-
tention was primarily focused on noncompact manifolds, because any com-
pact space-time contains a closed timelike curve, thus violating the basic
chronology condition of General Relativity.

The Hopf–Rinow Theorem fails to hold in general space-times. Indeed, we
have explicitly recalled the statement of this result because much research
has been set in the arena of what can be rescued for space-times and, later,
semi–Riemannian manifolds. (For example, Beem [4] concerned what could
be done with finite compactness, especially in the globally hyperbolic case.)

Also, nothing as simple as (2) holds for the space Lor(M) of all Lorentzian
metrics for a given smooth manifold M without imposing further conditions
on the background space-time (M, g) in question.

As one basic aspect of the failure of the Hopf–Rinow Theorem for space-
times, it should be emphasized at the outset that compactness of the un-
derlying manifold M by itself does not imply geodesic completeness of the
space-time (M, g). A well-known result in basic Riemannian geometry is the
proof that a homogeneous Riemannian metric on an arbitrary smooth man-
ifold is automatically geodesically complete. This result fails to hold for in-
definite metrics, but in Marsden [60] it was noted that a compact space-time
with a homogeneous metric is geodesically complete (providing an early ex-
ample of some less näıve aspects of the Hopf–Rinow Theorem being valid for
space-times).

Much later, in Carrière [26], it was shown that a compact, flat space-time
is geodesically complete; thus, adding the requirement that the Riemannian
curvature tensor vanish rescues that aspect of the Hopf–Rinow Theorem. A
second, more recent example which may be cited is the result that a compact
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Lorentzian manifold which admits a timelike Killing field is automatically
geodesically complete, obtained first with the assumption of constant curva-
ture in Kamishima [56] and in full generality in Romero and Sánchez [73].

To help the reader recall the time frame in which the First Edition came
into being, the following Table 1 shows the dates of publication for various
selected texts in differential geometry and General Relativity.

Table 1. Publication Dates for Selected Standard References in Differential Geom-
etry and General Relativity

R. Penrose, Techniques of Topology in General Relativity 1972
S. Hawking and G. Ellis, The Large Scale Structure of Space-time 1973
C. Misner, K. Thorne, and J. Wheeler, Gravitation 1973
R. Sachs and H. Wu, General Relativity for Mathematicians 1977
J. Beem and P. Ehrlich, Global Lorentzian Geometry 1981
B. O’Neill, Semi-Riemannian Geometry 1983

2 Some Aspects of Limit Constructions

In the context of the Eberlein–O’Neill compactification for complete, non-
compact Riemannian manifolds of nonpositive sectional curvature (cf. [30])
and applications to the differential geometry of the geodesic flow, continu-
ity and limit properties of sequences of geodesics (often expressed in the
language of the exponential map) were essentially employed. The following
aspects of the underpinnings of these topics especially captivated the author
during his graduate studies in Riemannian geometry. First, the routine use
of the compactness of the unit sphere bundle over any compact subset of the
Riemannian manifold (N, g0), and particularly the compactness of the set

{v ∈ TpN : g0(v, v) = 1} (3)

was noted. A second key geometric property was the existence of a minimal
geodesic ray

γ : [0,+∞) → (N, g0) (4)

based at each point p of N , i.e., a half geodesic γ as above with γ(0) = p and

L(γ|[0,t]) = d0(γ(0), γ(t)) for all t ≥ 0 . (5)

Here one could take a sequence {qn} in N with lim d0(p, qn) = +∞, and let
σn be a unit speed minimal geodesic with σn(0) = p and σn(d0(p, qn)) = qn.
Then taking any convergent subsequence of {σ′

n(0)}, say, converging to the
unit vector w in TpN , the unique geodesic σ in N with initial condition
σ′(0) = w provided the desired ray based at p.
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With this last construction in mind, it was only a small step to generalize
to the important asymptotic geodesic construction. Given the ray γ based at
p and any other point q in N , let tn → +∞, and this time let σn be a unit
speed minimal geodesic segment from q to γ(tn). Then considering

{σ′
n(0)} in TqN (6)

and letting w be any limit vector of this sequence by the compactness of (3),
the geodesic σ(t) = expq(tw), i.e., the unique geodesic σ : [0,+∞) → (N, g0)
with initial condition σ′(0) = w, was minimal as a limit of minimal segments
and was thus a geodesic ray based at q, said to be asymptotic to the given ray
γ. In these Riemannian studies, the uniqueness of the asymptotic geodesic
σ to γ was considered and also under various curvature hypotheses, it was
desired to estimate d0(γ(t), σ(t)) as t → +∞.

When space-times (M, g) rather than Riemannian manifolds are consid-
ered, an immediate road block to employing the above machinery is the fail-
ure of the set of unit timelike tangent vectors based at a point p of M to
be compact (even though this set is closed). A further difficulty is that a
sequence

{vn ∈ TpM : ‖vn‖ = −1} (7)

of unit timelike tangent vectors cannot converge to a null vector n, even
though the set of noncompact directions in TpM is itself compact, so that

direction(vn) → direction(n) (8)

is indeed possible.
If any point p in a space-time (M, g) is selected, then emanating from

p we have the three families of timelike, spacelike, and null geodesics. Espe-
cially in view of the limit arguments summarized above in global Riemannian
geometry, since the null geodesics are, in a näıve, imprecise fashion, limits of
the spacelike and timelike geodesics, it might be hoped (as was once hoped
in General Relativity) that, possibly, continuity arguments could be obtained
for the different types of geodesic completeness. For example, perhaps time-
like and spacelike geodesic completeness (or incompleteness) might force null
geodesic completeness (or incompleteness). However, in a series of exam-
ples, these earlier hopes were found to be too optimistic. Kundt [57] gave an
example which was timelike and null geodesically complete, but not space-
like complete. Geroch [46] gave a globally hyperbolic example, conformal to
Minkowski 2-space, which was null and spacelike complete, but not timelike
complete.

Before discussing Beem’s contribution [6] to this topic, we discuss a won-
derful way in which semi-Riemannian manifolds differ from definite metric
manifolds, from the viewpoint of the geodesic equation. When considering
perturbations of Riemannian and semi-Riemannian metrics, attention is of-
ten restricted to conformal changes of the metric. If Ω : M → (0,+∞) is a
given smooth function, then
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g = Ω2 g (9)

is called a conformal change of metric. (The factor of 2 produces pleasant
curvature and connection formulae.) Note that in the space-time case, the
null, timelike and spacelike tangent vectors for both g and g are the same;
hence the basic causality conditions like chronological, strongly causal, glob-
ally hyperbolic, etc., hold for both (M, g) and (M, g) simultaneously.

A second aspect, absent for the definite case for which there are no null
vectors, is that null geodesics for (M, g) remain null pregeodesics for (M, g).
To see this, write the conformal factor in the form

g = e2f g . (10)

Then the Levi–Civita connections ∇ and ∇ for (M, g) and (M, g) are related
by

∇XY = ∇XY +X(f)Y + Y (f)X − g(X,Y )grad(f) . (11)

Especially, if X is a null vector field on M (so that g(X,X) = 0), then

∇XX = ∇XX + 2X(f)X . (12)

Thus, if β is a null geodesic on (M, g) and ∇β′β′ = 0, it follows that

∇β′β′ = 2β′(t)(f)β′(t) (13)

and it is known that if such an equation holds, then β may be reparametrized
to be a null geodesic of (M, g). For Riemannian manifolds, by contrast, the
last gradient term in equation (11) will not vanish, for any nonzero X = Y ,
if the gradient is nonzero, and hence geodesics never persist under general
conformal changes of metric.

With this background established, we can report that in [6] an example
was given employing a conformal change involving an infinite product of fac-
tors. These factors were supported on suitably chosen subsets of a globally
hyperbolic space-time to preserve timelike and spacelike geodesic complete-
ness, but to produce null geodesic incompleteness for the deformed space-time
metric. Hence, combining [6] with the examples of these earlier authors, no
two types of geodesic completeness (or incompleteness) imply the third type.
Beem liked to phrase this as follows:

Theorem 2. Timelike geodesic completeness, null geodesic completeness,
and spacelike geodesic completeness are logically inequivalent.

In a somewhat related area, Beem also studied another important issue in
space-time geodesic geometry at the time. A well-known result of Nomizu and
Ozeki [68] asserts that an arbitrary Riemannian metric for a smooth man-
ifold can be made geodesically complete by a conformal change of metric.
On the other hand, the situation for space-times had been seen to be more
complicated. Misner [61] gave a 2-dimensional null geodesically incomplete



8 P.E. Ehrlich

example which could not be made complete by any conformal change (since
the incomplete null geodesics were future trapped in a compact set and would
remain future trapped null pregeodesics under any conformal change of met-
ric). Seifert [77] showed that if (M, g) were stably causal, then a conformal
change of metric could be made which would produce future nonspacelike
geodesic completeness. Clarke [29] showed that a strongly causal space-time
could be made null geodesically complete. So that is the setting for Beem’s
paper [5] on “Conformal changes and geodesic completeness.”

In this paper, Beem formulated what he termed “Condition N” for non-
imprisonment:

Definition 1. The causal space-time (M, g) will satisfy Condition N if, for
each compact subset K of M , there is no future inextendible nonspacelike
curve x(t) which is totally future imprisoned in K.

Here it should be noted that while in Riemannian geometry attention is
often simply restricted to geodesics , typically in General Relativity one has
to consider all nonspacelike curves, not just geodesics. Here also the curve
x(t) is said to be totally future imprisoned in K if there exists t1 so that
x(t) ∈ K for all t ≥ t1.

By making a sequence of conformal changes related to a compact exhaus-
tion and taking the infinite product of those functions for the final conformal
factor, Beem established.

Theorem 3. Let (M, g) be a causal space-time which satisfies Condition N.
Then there is some conformal factor Ω such that (M,Ω2 g) is null and time-
like geodesically complete.

As a corollary, it followed that if (M, g) were distinguishing, strongly
causal, stably causal or globally hyperbolic, then Condition N held, so that
(M, g) could be made nonspacelike geodesically complete by a conformal
change of metric. In Beem and Powell [22] an interesting study was made of
Condition N for doubly warped products.

Since conformal changes are being considered, we will briefly summarize
the first collaboration of Beem and the author in [8], “Conformal deforma-
tions, Ricci curvature and energy conditions on globally hyperbolic space-
times.” The author’s thesis research was originally motivated by efforts to
better understand a result of T. Aubin [1], which considered the question of
deforming a Riemannian metric of nonnegative Ricci curvature and all Ricci
curvatures positive at some point, to a metric of everywhere positive Ricci
curvature.

Looking at [1] led to the study of local convex deformations: conformal
deformations of a given Riemannian metric expressed in terms of the distance
to the boundary of a convex metric ball. It was found that if the given Ricci
curvature was nonnegative, then positive Ricci curvature could be produced
in an annular region of the boundary of the convex metric ball, cf. [31]. Since
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the distance from a point prior to the cut locus is nicely related to the index
form, rather precise and detailed calculations and estimates could be made.

In Beem and Ehrlich [8], this situation was studied for globally hyper-
bolic space-times, where the situation was found to be rather more intricate.
Since the intrinsic metric balls given by the Lorentzian distance function are
noncompact and generally go off to infinity (cf. Fig. 4.4 in [15]), the anal-
ogous intrinsic construction of Ehrlich [31] could not be employed. Instead,
in [8], a convex normal neighborhood B centered at p with local coordinates
x = (x1, x2, . . . , xn) was employed, and the auxiliary (nonintrinsic) distance
function

f(p) =
∑

i

xi(p)2 (14)

was used to construct deformations with support in B. As might be expected,
given this combination of intrinsic and auxiliary geometries, it was a more
technical problem to calculate and study the Ricci curvature of the deformed
metric. In contrast to the nicer Riemannian situation, where positive Ricci
curvature was produced in a whole annular neighborhood of the boundary
of the convex ball, it was found in the relativistic setting that positive Ricci
curvature could only be guaranteed near the “north polar cap.”

3 The Lorentzian Distance Function
and Causal Disconnection

Even if it has been ten years or more since the reader has been the recipient of
a graduate course in Riemannian geometry, she or he will no doubt still recall
the pleasant properties that for a complete Riemannian manifold (N, g0), the
Riemannian distance function d0 is continuous, and moreover, the metric
topology induced by d0 coincides with the given manifold topology. What
is even more remarkable and perhaps less often remembered is that these
properties are equally valid for an arbitrary incomplete Riemannian metric.
Furthermore, it is taken for granted that d0(p, q) is finite for all p, q ∈ N .

Let (M, g) be an arbitrary space-time and let p, q be two points of M . If
there is no future directed nonspacelike curve from p to q, set d(p, q) = 0; if
there is such a curve, let

d(p, q) = sup{L(c) | c : [0, 1] → M is a piecewise smooth
future directed nonspacelike curve with c(0) = p and c(1) = q} .

(15)

Then this defines what some authors term the Lorentzian distance function

d = d(g) : M ×M → [0,+∞] (16)

and other more physically motivated authors term proper time. (Note that
unlike the Riemannian case, (15) does not bound the values of d(p, q) from
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above by L(c) for any selected curve c.) When Beem and the author sur-
veyed the scene after completing [8], it seemed that time was ripe for a more
systematic exposition of the properties and uses of the space-time distance
function. It had received some discussion in the monographs already pub-
lished (see Table 1), and in some research papers. But confusion was found
between nonspacelike conjugate points and nonspacelike cut points in certain
aspects of the timelike index theory as explained in Hawking and Ellis [54]
(indeed, nonspacelike cut points had not yet been formulated in the litera-
ture). An intrinsic Morse index theorem for null geodesic segments in arbi-
trary space-times had not yet been published, despite several works such as
Uhlenbeck [78] and Woodhouse [80], among others.

Working some of these issues out was accomplished in Beem and Ehrlich
[9–11], and in greater detail in the First Edition of Global Lorentzian
Geometry [12]. In place of the complete metric of Riemannian geome-
try, what emerged was an interesting interplay between the causal prop-
erties of the given space-time and the continuity (and other properties) of
the Lorentzian distance function. Philosophically, this aspect emerges since
d(p, q) > 0 iff q ∈ I+(p). For example, at the one extreme of totally vi-
cious space-times, the Lorentzian distance always takes on the value +∞ (cf.
p. 137 in [15]). Less drastically, if (M, g) contains a closed timelike curve
passing through p, then d(p, q) = +∞ for all q ∈ I+(p). In an allied vein, a
space-time (M, g) is chronological iff its distance function vanishes identically
on the diagonal

∆(M) = {(p, p) : p ∈ M} . (17)

In general, the Lorentzian distance function is only lower semi-continuous.
The strength of the additional property of upper semi-continuity is seen in the
result that if a distinguishing space-time has a continuous distance function,
then it is causally continuous.

At the other extreme from totally vicious space-times in the hierarchy
of causality are globally hyperbolic space-times. In some sense, these space-
times share many of the properties of complete Riemannian manifolds. For
instance, the Lorentzian distance function of a globally hyperbolic space-
time is both continuous and finite-valued. (Indeed, it may be shown that a
strongly causal space-time (M, g) is globally hyperbolic iff all Lorentz metrics
g′ in the conformal class C(M, g) also have finite-valued distance functions
d(g′).) Second, for globally hyperbolic space-times, Seifert [76] and others
had established the important working tool of maximal nonspacelike geodesic
connectability : given any p, q ∈ M with p � q, there exists a nonspacelike
geodesic segment c : [0, 1] → (M, g) with c(0) = p, c(1) = q, and L(c) =
d(p, q), in exact analogy with property (5) of the Hopf–Rinow Theorem stated
in Sect. 1. In view of the last several properties of the distance function, the
theories of the timelike and null cut loci were studied for globally hyperbolic
space-times in Beem and Ehrlich [9].
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Now let us turn to the main aim of this section, the discussion of causally
disconnected space-times. Here is a general pattern which is common in global
Riemannian geometry:

complete Riemannian metric
and

curvature inequality (18)
implies

topological or geometric conclusion.

A celebrated early example of (18) is the Topological Sphere Sphere Theo-
rem of Riemannian geometry of the 1950s and 1960s: suppose that a complete,
simply connected Riemannian manifold admits a metric whose sectional cur-
vatures vary between 1/4 and 1, but are always strictly greater than 1/4.
Then the manifold M must be homeomorphic to the standard round sphere
of the same dimension as the given manifold.

In contrast with the Riemannian situation, we have already remarked in
Sect. 1 that many standard examples of space-times fail to be nonspacelike
geodesically complete. As we thought about (18) and certain of the singular-
ity theorems already published in General Relativity from the viewpoint of
differential geometry, the following contrasting pattern (19) emerged:

curvature inequality (gravitation is attractive)
and

physical or geometric assumption (19)
implies

the existence of an incomplete timelike or null geodesic.

As we were working on the concept of causal disconnection, we also had
as a motivation that some cosmological and physical models are not glob-
ally hyperbolic, but are only strongly causal. Thus we wanted to establish
a formalism in the more general strongly causal setting for which (a) the
space-time distance function may be less tractable than for globally hyper-
bolic space-times, and also (b) the tool of maximal nonspacelike geodesic
connectability is not available. (Later, in the context of the Lorentzian split-
ting theorem in the timelike geodesically complete case, Newman [63] and
Galloway and Horta [44] would find the use of almost maximizers essential.)
We were also motivated by the theory of the end structure for Riemannian
or topological manifolds in establishing this concept. Strong causality did at
least have the virtue that convergence in the limit curve sense and conver-
gence in the C0 topology on curves were closely related, as well as the fact
that the upper semi-continuity of arc length in the C0 topology fits in well
with the lower semi-continuity of the space-time distance function (cf. Beem,
Ehrlich and Easley [15], Sect. 3.3). Hence, the limit curve apparatus already
established in General Relativity served as a partial substitute for some of
the geodesic limit constructions for complete Riemannian manifolds reviewed
at the beginning of Sect. 2. As the concept was stated in [15], p. 283:
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Definition 2. A space-time (M, g) is said to be causally disconnected by a
compact set K if there exist two infinite sequences {pn} and {qn} diverging
to infinity such that for each n, pn � qn, pn �= qn, and all future directed
nonspacelike curves from pn to qn meet K.

This definition as finally formulated had the virtue that all Lorentzian metrics
in the conformal class C(M, g) are causally disconnected if any one of them
is, unlike the original formulation in Beem and Ehrlich [7] which also assumed
the finite distance condition

0 < d(pn, qn) < +∞ for all n . (20)

This finiteness assumption made it possible to use a simpler limit curve con-
struction procedure, but unfortunately this earlier version of causal discon-
nection was only conformally invariant in the case that (M, g) was globally
hyperbolic, so condition (20) was later dropped. As pointed out on Fig. 8.1
of [15], non-globally hyperbolic space-times may be causally disconnected.

By using local distance functions related to a compact exhaustion {Bn}
of M , almost maximizers related to the local distance functions, and taking
limits (thanks to strong causality), the following result was obtained.

Theorem 4. Let (M, g) denote a strongly causal space-time which is causally
disconnected by a compact set K. Then M contains a nonspacelike geodesic
line which intersects K.

Here, a line is a past and future inextendible nonspacelike geodesic which
realizes the Lorentzian distance function between every pair of its points.
Now, unlike the familiar situation in the global Riemannian geometry of
complete Riemannian manifolds, no assertion is being made here that the
line is geodesically complete, only that it is inextendible.

With this result in hand, a singularity theorem fitting the pattern of (19)
could be obtained:

Theorem 5. Let (M, g) be a chronological space-time of dimension greater
than or equal to three which is causally disconnected. If (M, g) satisfies the
timelike convergence condition and the generic condition, then (M, g) is non-
spacelike geodesically incomplete.

Lurking in the background is a well-used result in causality theory of General
Relativity that if (M, g) is a chronological space-time such that each inex-
tendible null geodesic has a pair of conjugate points, then (M, g) is strongly
causal (cf. [15], p. 467). In the statement of Theorem 5, we find two of the cur-
vature conditions traditionally imposed in this branch of General Relativity.
The first, the timelike convergence condition, is simply stated as Ric(v, v) ≥ 0
for all timelike tangent vectors v (hence, by continuity, the same condition
holds for all nonspacelike tangent vectors). The second condition is some-
what more mysterious to differential geometers, and on a first pass can be
paraphrased as the assertion that every inextendible nonspacelike geodesic
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has some suitable nonzero sectional curvature. Indeed, formulating this con-
dition in various ways easier for differential geometers to understand was
done in Beem and Ehrlich [12] and Beem, Ehrlich and Easley [15]; (cf. Beem
and Parker [21] among others for a discussion of the physical aspects of this
condition).

In any event, the generic condition in the more unfriendly language of
tensor calculus is discussed in the author’s second favorite passage in Hawking
and Ellis ( [54], p. 101), where K denotes the tangent vector to the null
geodesic under consideration:

“As in the timelike case, this condition will be satisfied for a null
geodesic which passes through some matter provided that the matter
is not pure radiation (energy-momentum tensor type II of §4.3) and
moving in the direction of the geodesic tangent vector K. It will
be satisfied in empty space if the null geodesic contains some point
where the Weyl tensor is non-zero and where K does not lie in one of
the directions (there are at most four such directions) at that point
for which KcKdK[aCb]cd[eKf ] = 0. It therefore seems reasonable to
assume that in a physically realistic solution every timelike or null
geodesic will contain a point at which KaKbK[cRd]ab[eKf ] is not zero.
We shall say that a space-time satisfying this condition satisfies the
generic condition.”

So from the cynical viewpoint, one might take the following interpretation
from this paragraph, which the author did for many years in perfect content-
ment:

physically realistic =⇒ generic condition . (21)

On the other hand, “generic” has a precise meaning in differential geometry
and topology; a condition is said to hold generically when it holds on an
open, dense subset of the space in question. It never occurred to the author
to ponder how (21) interfaced with this more precise definition of “generic,” so
he was thus delighted in the early 1990s to receive two preprints from J. Beem
and S. Harris, published as [17, 18], the first with the especially charming
title “The generic condition is generic.” Since the most precise results in
these papers are a bit complicated to state, we will content ourselves here
with just giving four of the more easily stated results obtained in these two
publications:

(1) Ric(w,w) �= 0 implies w is generic.
(2) All vectors in TpM are nongeneric implies that the curvature tensor at p

vanishes identically.
(3) Constant curvature implies all null vectors are nongeneric.
(4) If (M4, g) does not have constant sectional curvature at p, then the

generic null directions at p form an open dense subset of the two-sphere
of all null directions at p.
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Thus, one could interpret (4) as stating that “the generic condition is
generic after all,” since a physically realistic universe should probably not
have constant sectional curvature.

4 The Stability of Geodesic Completeness Revisited

In the First Edition of Global Lorentzian Geometry [12], a short Sect. 6.1
was written, entitled “Stable Properties of Lor(M) and Con(M),” which
was partly inspired by results of Lerner [58]. A motivation for this type of
investigation in General Relativity had been provided by the hypotheses in
the Singularity Theorems. If a condition held on an open subset of metrics
in the space Lor(M) of all Lorentzian metrics for a given smooth manifold
M , then philosophically a robuster theorem would result since this part of
the hypotheses would remain true under suitable perturbations of the given
metric, desirable since measurements cannot be made with infinite precision.

A result quoted in this Sect. 6.1 was the Cr-stability of geodesic com-
pleteness in Lor(M) for all r ≥ 2. In the remaining two sections of Chap. 6,
based on [13], a question raised in [58] was studied – the stability of timelike
and null geodesic incompleteness for Robertson-Walker space-times. Here, a
Robertson–Walker space-time was taken to be a warped product

M = (a, b) ×f H (22)

where (H,h) was a homogeneous Riemannian manifold and the metric tensor
had the form

g = −dt2 + fh . (23)

That is how matters stood until 1985, when a copy of P. Williams’ Ph.D.
thesis [79], “Completeness and its stability on manifolds with connection,”
was received unexpectedly in the mail. This article revealed that there was
a significant gap in the previous arguments for the Cr-stability of geodesic
completeness in Lor(M), and that in fact neither geodesic completeness nor
geodesic incompleteness was Cr-stable, although a stronger topology could
be placed on Lor(M) which made geodesic completeness stable.

From a certain perspective, a good deal of research in global space-time
geometry during the next decade can be viewed as trying to understand the
more complicated geometry of the space of geodesics, once it was realized
that Proposition 6.4 on page 175 of [12] failed to be valid.

In Williams [79], explicit studies were made of the system of null geodesics
on the 2-torus T 2 which has background flat metric g = dx dy. For the first
example, Williams studied the sequence of metrics

gn = dx dy +
(

sinx
n

)
dy2 (24)
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and observed that x = 0 represents an incomplete null geodesic on (T 2, gn)
for all n. Hence, null geodesic completeness fails to be Cr-stable. For the
second example, Williams considered

gn = dx dy + (1 − cosx+ 1/n)dy2 (25)

and observed that while

dx dy + (1 − cosx)dy2 (26)

contains an incomplete null geodesic, the metrics gn are all null geodesically
complete. Hence, null geodesic incompleteness fails to be Cr-stable.

In a series of papers, of which we will only discuss results from Beem and
Parker [19,20], the concept of pseudoconvex geodesic system was formulated,
(cf. Parker [70] for the PDE motivation for this work). The theory was first
formulated for metric connections and later broadened to linear connections.
Here is how the concept is defined for the nonspacelike geodesics of a space-
time (M, g).

Definition 3. The space-time (M, g) is causally pseudoconvex iff for each
compact subset K of M , there is a compact subset K ′ of M such that if
γ : [a, b] → M is a nonspacelike geodesic with γ(a) ∈ K and γ(b) ∈ K, then
γ([a, b]) is contained in K ′.

As well as being a convexity statement akin to taking the convex hull of a set,
this condition can be understood as a kind of internal completeness condition.
It rules out incompleteness arising, for example, by taking a causal diamond
M = I+(p) ∩ I−(q) and deleting a single point.

A second condition Beem and Parker imposed was that neither end of
any of the geodesics in the geodesic system should be totally imprisoned in
a compact set.

Definition 4. The space-time (M, g) is causally disprisoning if, for each in-
extendible nonspacelike geodesic γ : (a, b) → M and any t0 ∈ (a, b), both sets
{γ(t) : a < t ≤ t0} and {γ(t) : t0 ≤ t < b} fail to have compact closure.

It is interesting that while neither causal pseudoconvexity nor causal dispris-
onment is a stable property by itself, together causal pseudoconvexity and
causal disprisonment are C1-stable in Lor(M). Indeed, the combination of
these two properties may be regarded as a generalization of global hyperbol-
icity, for which Geroch [48] observed the C0-stability in Lor(M).

In place of the assumption of Riemannian completeness, Beem and Parker
[20] proved the following working tool for a manifoldM with linear connection
∇.

Lemma 1. Let (M,∇) be both pseudoconvex and disprisoning. Assume that
pn → p and qn → q for distinct p, q in M . If each pair pn, qn can be joined
by a geodesic segment, then there exists a geodesic segment from p to q.
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Using this tool, Beem and Parker obtained a result akin to the type of thing
classically obtained in Riemannian geometry for Cartan–Hadamard mani-
folds.

Theorem 6. Let (M,∇) be both pseudoconvex and disprisoning. If (M,∇)
has no conjugate points, then (M,∇) is geodesically connected. Thus for each
p in M the exponential map expp : TpM → M is a diffeomorphism of M
with R

n.

Here is an example of how these two conditions under consideration rescue
the stability of geodesic completeness.

Theorem 7. Let (M, g) be causally pseudoconvex and causally disprison-
ing. If (M, g) is nonspacelike geodesically complete, then there is a fine C1-
neighborhood U(g) of g in Lor(M) such that all g′ in U(g) are nonspacelike
geodesically complete.

In Beem and Ehrlich [14], a more conceptual study of certain of the con-
structions in Williams [79] was made. First, in a partial return to the roots of
Ehrlich [31], a study was made of how conformal changes interfaced with
null geodesic completeness. It was found that “small” conformal changes
will destroy neither null completeness nor null incompleteness for pseudo-
Riemannian manifolds (note that (24) and (25) are not conformal changes of
metric). As a consequence, it follows that for a compact manifold M , all met-
rics in the conformal class C(M, g) are either null geodesically complete or
null geodesically incomplete. In the 1990s, Romero and Sánchez at Granada
and others conducted studies of the geodesic behavior on compact space-
times, obtaining a detailed and rich understanding (cf. [73] and [75] for two
examples out of many).

Secondly, in the spirit of the Williams’ examples which contained closed
null geodesics, the following general result was obtained:

Theorem 8. Let (M, g) be a pseudo-Riemannian manifold with a closed null
geodesic β : [0, 1] → M satisfying β′(0) = β′(1). Then each C∞-fine neigh-
borhood U(g) of g in Pseudo(M) contains a metric g1 which contains an
incomplete closed null geodesic (and thus is null incomplete ).

The proof relies on a very non-Riemannian phenomenon important in certain
aspects of General Relativity: given a smooth closed null geodesic γ : [0, 1] →
(M, g), it is not automatically the case, as it is for Riemannian (timelike or
spacelike) geodesics, that γ′(0) = γ′(1), forcing the geodesic to be complete.
Instead, all that can be guaranteed in the null case is that γ′(0) and γ′(1) are
proportional. If these two vectors are unequal, then the given null geodesic
is either future incomplete or past incomplete (cf. [15], pages 243–244 for a
proof). So in [12], the given complete closed null geodesic β was perturbed
in a tubular neighborhood (by a study of the Christoffel symbols and the
geodesic ODEs) to a reparametrized null geodesic γ, with the same image as
β, but having γ′(1) = cγ′(0) with c > 1. Hence the new null geodesic γ was
future incomplete.
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5 The Lorentzian Splitting Problem

During the academic year 1979–1980, a Special Year in Differential Geometry
was held at the Institute for Advanced Study in Princeton, New Jersey, with
lead organizer Professor Shing–Tung Yau. We were fortunate enough to have
been invited to participate in this program and elected to spend the second
semester at the Institute. In the waning days of this session, Yau delivered
a series of lectures, suggesting problems in differential geometry worthy of
consideration. The list was published a few years later in Yau [81] in the
Annals of the Mathematics Studies volume stemming from the Special Year
in Differential Geometry at the Institute. As the author was attending these
lectures, as a student of Professor Detlef Gromoll at Stony Brook and also
having come under the influence of Professor Jeff Cheeger, he could not help
but notice one of the problems Yau proposed:

Conjecture 1. (Yau) Show that a space-time (M, g) which is timelike geo-
desically complete, obeys the timelike convergence condition, and contains a
complete timelike line, splits as an isometric product (R × V,−dt2 + h).

This problem was stated without motivation then as a proposal to obtain the
space-time analogue of the celebrated Cheeger–Gromoll splitting theorem for
Riemannian manifolds (cf. [28]). As the author thought about suggesting to
Professor Beem that we attack this problem with the aid of a visiting post-
doctoral researcher from Denmark, Dr. Steen Markvorsen, he was puzzled
as to why Yau had formulated the problem with the hypothesis of time-
like geodesic completeness rather than global hyperbolicity. For, recall from
Sect. 3 that timelike geodesic completeness does not guarantee the existence
of maximal timelike geodesic segments between chronologically related pairs
of points, while global hyperbolicity does guarantee that helpful property.
But this question was to go unanswered for several months until Professor
G. Galloway, passing through Columbia for a short visit on the way back to
Miami from a sabbatical in San Diego, could enlighten us himself as to what
he had learned from S.-T. Yau.

At the time we began consideration of the problem, we were aware of
various results on related issues employing maximal hypersurface methods,
(cf. Bartnik [2], Gerhardt [45], and Galloway [41], among others). As decided
nonexperts in maximal hypersurfaces, it seemed to us that it might be a wiser
course to try to begin the study of the Busemann function of a timelike geo-
desic ray, since that tool had been a key ingredient rediscovered by Cheeger
and Gromoll for use in their proof of the Riemannian splitting theorem. The
author had studied Busemann functions during his stay in Bonn in connec-
tion with manifolds of negative curvature, and of course Beem was a student
of Busemann himself, familiar with the text Busemann [25].

Since we had decided to take the course of action of exploring the Buse-
mann function of a timelike geodesic ray, we returned once again to Cheeger
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and Gromoll [28], which we had always found a challenging paper to un-
derstand. With the great emphasis on ellipticity of the Laplacian, while the
d’Alembertian of General Relativity is hyperbolic, it also seemed like a daunt-
ing task to make any of this transform to the space-time case. Fortunately,
just before we began our studies, we received an unexpected preprint in the
mail which was published later as Eschenburg and Heintze [38]. At a first
glance, it looked like an approach to the splitting problem that had a good
chance of adapting to the space-time setting, and so with Markvorsen we set
to work.

Many standard elementary methods in basic Riemannian geometry, in
the context of constructing asymptotic geodesics as recalled in Sect. 2, rely
on the compactness of the set of unit vectors based at a given point in the
manifold. For space-times, we have recalled, however, the set of future unit
timelike vectors based at a point (while closed) is noncompact and that a
sequence of unit timelike tangent vectors can never converge to a null vector
n.

By analogy with the Riemannian construction, let

γ : [0,+∞) → (M, g) (27)

be a unit timelike geodesic ray, i.e., suppose that

L(γ|[0,t]) = d(γ(0), γ(t)) for all t ≥ 0 . (28)

Take any p in M with p in the chronological past of γ and any sequence
sn > 0 with sn → +∞. Assuming that (M, g) is globally hyperbolic, construct
unit speed maximal timelike geodesic segments cn from p to qn = γ(sn). As
discussed above, in the Riemannian case, one could turn to the sequence
of unit vectors {cn′(0)} and extract a convergent subsequence to define an
asymptotic geodesic c to γ starting at p. But as we have indicated above, in
the space-time case such a convergence is not guaranteed.

However, already at hand is the limit curve machinery for strongly causal
space-times mentioned in Sect. 3. So instead, one may let c be a nonspacelike
limit curve of the timelike geodesic segments {cn}. Then two issues which
must be dealt with are: (i) why is c timelike rather than null, and (ii) why is
c future complete?

Inspired by the somewhat more general approach taken to the asymptotic
geodesic construction in Busemann [25] (cf. Busemann [24]) for apparently
the first appearance of what would later be termed by others the Busemann
function), in Beem, Ehrlich, Markvorsen, and Galloway [16] the following
definition was adopted for the concept of a nonspacelike asymptotic geodesic
ray in which the point x corresponding to the point p above was allowed to
vary in the limit construction:

Definition 5. A future co-ray to γ from x will be a causal curve starting at
x which is future inextendible and is the limit curve of a sequence of maximal
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length timelike geodesic segments from xn to γ(rn) for two sequences {xn},
{rn} with xn → x and rn → +∞.

To cope with the technicalities discussed above, the concept of the timelike
co-ray condition was also formulated.

Definition 6. The globally hyperbolic space-time (M, g) satisfies the timelike
co-ray condition for the timelike line γ : (−∞,+∞) → (M, g) if, for each x
in I(γ) = I+(γ)∩ I−(γ), all future and past co-rays to γ from x are timelike.

Here the analytic definition of the Busemann function corresponding to the
future timelike geodesic ray γ|[0,+∞) is given by:

(bγ)+(x) = lim
r→∞

(r − d(x, γ(r))) . (29)

As mentioned in Sect. 3, the space-time distance function is generally less
tractable than the Riemannian distance function. Hence, even issues such as
continuity of (29) are less obvious. However, it was established in [16] that
the timelike co-ray condition implied the continuity of the Busemann func-
tions on I(γ). Moreover, making the stronger hypothesis that all timelike
sectional curvatures were nonpositive, it was established that the timelike
co-ray condition holds on all of I(γ), so that each of b+, b−, and B = b+ + b−

is continuous on I(γ). Thanks to the aid of the powerful Toponogov Theo-
rem for globally hyperbolic space-times with nonpositive timelike sectional
curvatures, established in Harris [50, 51], it was also possible to prove that
all past and future timelike co-rays to the given timelike geodesic line were
complete. Hence, under the timelike sectional curvature hypothesis rather
than the more desirable Ricci curvature hypothesis, one had what we liked
to think of as “large scale control of the geometry on all of I(γ).” From this,
one could obtain the splitting of I(γ) as a metric product

(I(γ), g) = (R ×H,−dt2 + h) (30)

where (H,h) was any level set of the Busemann function in the induced
metric. (In Riemannian geometry, the corresponding level sets are called
“horospheres.”) Finally, by inextendibility arguments, one deduced that
I(γ) = M .

What are some geometric issues hidden in the proofs involved in the
B = b+ + b− theory? Let γ be a complete timelike line as above and let
p ∈ I(γ). Form a future timelike co-ray c1 to γ|[0,+∞) and form a past timelike
co-ray c2 to γ|[0,−∞), both starting at p. Then the biggest geometric issue is,
why does it happen that

c1
′(0) = −c2′(0) (31)

so that c1 and c2 join together at p to form a smooth geodesic? Secondly, why
is the geodesic globally maximal? Once these things have been established,
then one can view the factor R of the splitting as being formed geometrically
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by the collection of all of these asymptotic past and future rays to γ fitting
together properly and H as any level set of the Busemann function.

We now briefly summarize how the proof of the splitting theorem was
extended from the sectional curvature hypothesis to the desired timelike con-
vergence condition that Ric(v, v) ≥ 0 for all timelike (hence all nonspacelike)
tangent vectors. J.-H. Eschenburg [37] obtained the first important break-
through in realizing that instead of trying for global control of the timelike
co-rays on I(γ) as in Beem, Ehrlich, Markvorsen, and Galloway [16], it was
sufficient to obtain a splitting in a tubular neighborhood of the given timelike
geodesic line and then extend the splitting to all of (M, g) through a proce-
dure similar to the one used in making analytic continuation type arguments
in complex analysis. Hence, in [37], the splitting theorem was obtained under
the assumption of both timelike geodesic completeness and global hyperbol-
icity in the Ricci curvature case.

Working with this new idea, Galloway was able to remove the hypothesis
of geodesic completeness shortly thereafter (cf. Galloway [42]). Then Newman
returned to the original question of Yau and obtained the splitting for timelike
geodesic completeness rather than global hyperbolicity (cf. Newman [63]).
Here, Newman had to confront the issue that maximal nonspacelike geodesic
segments could not be constructed without global hyperbolicity, so he had
to work with almost maximizers instead of geodesics, introducing a higher
level of complexity. A philosophy which emerged is that the existence of a
maximal geodesic segment implies that things work out better in a tubular
neighborhood of this maximal segment, in terms of the behavior of almost
maximizers, the Busemann function, etc. In Galloway and Horta [44], these
ideas were given a much simplified exposition and especially the original
timelike co-ray condition of the earlier work [16] morphed into the generalized
timelike co-ray condition.

Out of all of these results, the Lorentzian Splitting Theorem emerged.

Theorem 9. Let (M, g) be a space-time of dimension n ≥ 3 which satisfies
each of the following conditions:

(1) (M, g) is either globally hyperbolic or timelike geodesically complete.
(2) (M, g) satisfies the timelike convergence condition.
(3) (M, g) contains a complete timelike line.

Then (M, g) splits isometrically as a product (R×V,−dt2 +h), where (H,h)
is a complete Riemannian manifold.

Later, a version of the Splitting Theorem would also be obtained for maximal
null geodesic lines, cf. Galloway [43].

As mentioned above, we had no inkling as to why Yau had proposed the
problem of proving a Lorentzian splitting theorem (which was not mentioned
by Yau in his lectures at the Institute or the Problem List written from
those lectures), but that was explained to us by Galloway when he spoke in
Columbia about what was published as [41]. Yau’s motivation had been the
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idea that timelike geodesic completeness should interface with the concept of
“curvature rigidity” which had been formulated during the 1960s and 1970s in
global Riemannian geometry, cf. especially the exposition in the introduction
to the text Cheeger and Ebin [27], where it was first widely publicized.

Recall our earlier statement of the Sphere Theorem of global Riemannian
geometry; if a complete, simply connected Riemannian manifold has sectional
curvatures strictly 1/4-pinched, then it is homeomorphic to the n-sphere of
the same dimension. In the statement of this result, there is a curvature
condition of strict inequality. For curvature rigidity, the condition of strict
inequality is relaxed to include the possibility of equality as well, and one
tries to show that either the old possibility still obtains, or if it fails to be
true, it fails in an isometric (hence “rigid”) way.

Thus in the Riemannian example, if one relaxes the pinching on the sec-
tional curvature to 1

4 ≤ K ≤ 1, then either the Riemannian manifold remains
homeomorphic to the n-sphere (the old alternative), or if not, it is isometric
to a symmetric space of rank one.

Already in Geroch [47], the idea had been presented that most space-
times should be nonspacelike geodesically incomplete and also that a space-
time should fail to be nonspacelike geodesically incomplete only under spe-
cial circumstances (in the paragraph below, a white dot represents a geodesi-
cally complete space-time, a black dot a nonspacelike geodesically incomplete
space-time):

“Thus we expect that the diagrams for closed universes will be almost
entirely black. There are, however, at least a few white points. There
exist closed, geodesically complete, flat space-times. . . Perhaps there
are a few other nonsingular closed universes, but these may be ex-
pected to appear either as isolated points or at least regions of lower
dimensionality in an otherwise black diagram.”

To see how the idea of curvature rigidity could apply in the context of time-
like geodesic incompleteness, first let us state a simple prototype singularity
theorem:

Theorem 10. Let (M, g) be a space-time of dimension n ≥ 3 which satisfies
each of the following conditions:

(1) (M, g) contains a compact Cauchy surface.
(2) (M, g) satisfies Ric(v, v) ≥ 0 on all nonspacelike tangent vectors v.
(3) Every inextendible nonspacelike geodesic satisfies the generic condition.

Then (M, g) contains an incomplete nonspacelike geodesic.

In this result, condition (2) already allows for equality, so that cannot be
weakened. Thus, here curvature rigidity would call for dropping the require-
ment (3) of the generic condition that some curvature quantity is nonzero
at some point of the geodesic. Hence, that is how the conjectured rigidity of
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timelike geodesic completeness arises. This was apparently first published by
one of Yau’s Ph.D. students in Bartnik [3] as follows:

Conjecture 2. Let (M, g) be a space-time of dimension n ≥ 3 which

(1) contains a compact Cauchy surface, and
(2) satisfies the timelike convergence condition Ric(v, v) ≥ 0 for all timelike

v.

Then either (M, g) is timelike geodesically incomplete, or (M, g) splits isomet-
rically as a product (R×V,−dt2 +h), where (H,h) is a compact Riemannian
manifold.

The isometric splitting in the second alternative is precisely the manifestation
of curvature rigidity here. The idea to solve this conjecture is a proof by con-
tradiction. Suppose the space-time is not timelike geodesically incomplete.
From the hypotheses, produce a nonspacelike line (recall Theorem 4 above),
and prove that the line is timelike rather than null. Then under the assump-
tion of timelike geodesic completeness the line is complete, so the Lorentzian
Splitting Theorem may be applied to give the second alternative. Indeed, a
result of this sort was obtained in [16] under the stronger sectional curvature
hypothesis. A survey of later progress on this conjecture may be found in [15],
Sect. 14.5.

6 Gravitational Plane Waves
and the Nonspacelike Cut Locus

In August 1982 the author found himself in Gainesville, Florida, as a par-
ticipant in an NSF CBMS Regional Conference with principal guest lecturer
Professor Wilhelm Klingenberg of Bonn University. At that time, we were
so impressed by the heat and humidity and the uniformity of the weather
predictions on the evening newscast, we decided that we would never again
set foot in the state of Florida. But in the fall of 1986, when we happened to
be standing in the mathematics office at the University of Missouri, the Chair
pointed out to us an advertisement which had just appeared in the Notices of
the American Mathematical Society. This advertisement announced a build-
ing campaign for the Florida department with 20 new positions being added
over the next five years, and during the first year of this process one of the
desired fields called for a senior appointment in differential geometry, with
the successful candidate also advising on the recruitment of several junior
positions. We telephoned the new outside Chair at the University of Florida,
Gerard Emch, and were later somewhat surprised to find ourselves back in
Gainesville during December, 1986, on a job interview of several days. During
this time in Gainesville, Emch showed us a copy of Penrose’s paper [71], in-
cluding an intriguing Fig. 2 on page 218 (which both Sánchez and the author
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showed separately during our plenary lectures at this conference). Emch told
us that he had done some preliminary calculations on the gravitational plane
wave space-times inspired by this paper, but would like to work together on
obtaining a more complete understanding if I were to indeed become the new
Professor of differential geometry at the University of Florida.

Finally, during the spring semester, 1989, during the year that Profes-
sor Greg Galloway of the University of Miami was also in Gainesville, we
three started meeting weekly in Emch’s office for him to explain what he
had learned from his prior studies of Penrose [71]. Soon, Emch and Galloway
were eager to pass from this established arena and do some more exotic things
like add dust to the basic model. Galloway even explained how Frankel’s ap-
proach [40] to the Raychaudhuri equation was well adapted to such calcula-
tions. At the end of one of our sessions, it was decided that each of us should
think of an aspect of this class of space-times on which our particular exper-
tise could be brought to bear. Now the abstract theory of the nonspacelike
cut locus had been developed for globally hyperbolic space-times in [9], and
some standard elementary examples had been presented. However, nothing
as exotic as the geodesic behavior in [71] had been considered, and also this
class of space-times presented an initial challenge in that they all failed to
be globally hyperbolic, so neither the tool of maximal nonspacelike geodesic
connectability nor the general theory of the nonspacelike cut locus was imme-
diately available. Thus we announced that we thought it would be interesting
to understand the nonspacelike cut locus for this class of space-times, little
suspecting that it would encompass four years to completely tie up all the
loose ends, especially aspects of the achronal boundary (cf. [32–36]).

Since Sánchez in his lecture at the conference provided a complete dis-
cussion of plane fronted waves and other issues, we refer to his article in
this volume (with Flores) for more general background and concentrate on
the gravitational plane wave space-times and the nonspacelike cut and first
conjugate loci in this section, cf. also the discussion in Chap. 13 of [15].

Let γ : [0, a) → (M, g) be an inextendible future directed nonspacelike
geodesic in a general space-time (M, g) with Lorentzian distance function d
given as in (15). Consider the condition

d(γ(0), γ(t0)) = L(γ|[0,t0)) (32)

for some t0 in [0, a) which particularly implies that d(γ(0), γ(t0)) is finite.
By the reverse triangle inequality for Lorentzian distance, d(γ(0), γ(t)) is
finite for all t ≤ t0. Suppose that γ|[0,t] is not maximal for some t with
0 < t < t0. Then by definition of space-time distance, there exists a fu-
ture causal curve σ : [0, 1] → (M, g) with σ(0) = γ(0), σ(1) = γ(t),
and L(σ) > L(γ|[0,t]). Forming the composition µ = σ ◦ γ|[t,t0], we have
L(µ) > L(γ|[0,t0]) = d(γ(0), γ(t0)), contradicting the definition of the dis-
tance (15). (For t = 0, if d(γ(0), γ(0)) > 0, then there is a closed timelike
curve σ : [0, 1] → (M, g) with σ(0) = σ(1) = γ(0) and traversing σ over and
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over, we obtain d(γ(0), γ(0)) = +∞, in contradiction.) Hence, if (32) holds
for t0, then

d(γ(0), γ(t)) = L(γ|[0,t]) (33)

holds for all t with t ≤ t0, e.g., the nonspacelike geodesic segment γ|[0,t] is
maximal for all t ≤ t0.

Now in less tractable space-times, like the totally vicious space-times re-
called in Sect. 3 with d(p, q) = +∞ for all p, q in M , condition (32) never holds
for any t0. More benignly, if the chronological condition fails to hold at γ(0),
condition (32) fails to hold for any t0. At the other extreme on the causality
ladder, for globally hyperbolic space-times, the distance function is always
finite valued and continuous. Thus condition (32) may be considered along
any nonspacelike geodesic. Also, as recalled in prior sections, causally related
pairs of points are joined by maximal geodesic segments. Hence, the concept
of the nonspacelike cut locus fits most handily into the class of globally hy-
perbolic space-times, but may be formulated in more general space-times,
cf. [9].

Returning to the inextendible future directed nonspacelike geodesic γ :
[0, a) → (M, g) in the arbitrary space-time (M, g) and supposing that (33)
holds for some t ≥ 0, now set

t0 = sup{t ∈ [0, a) : d(γ(0), γ(t)) = L(γ|[0,t])} . (34)

Definition 7. If 0 < t0 < a, then the point γ(t0) in (M, g) is said to be the
future nonspacelike cut point of p = γ(0) along γ.

Consistent with our terminology above, in [12] and in several earlier journal
articles, a future directed nonspacelike curve σ : [0, d] → (M, g) was said to
be maximal if L(σ) = d(σ(0), σ(d)) and it was also noted that a maximal
nonspacelike curve may be reparametrized as a smooth geodesic (cf. [15],
p. 147). Employing this language, it may be checked (just as was done for
the cut locus in the earlier Riemannian theory) that

(a) for 0 < s < t < t0, γ|[s,t] is the unique maximal nonspacelike geodesic
segment in all of (M, g) between γ(s) and γ(t) ;

(b) γ|[0,t] is maximal for all t with 0 ≤ t ≤ t0 ;
(c) for all t with t0 < t < a, there is a longer nonspacelike curve in (M, g)

than γ|[0,t] between γ(0) and γ(t) .

Especially, γ|[0,t] is maximal in the above sense up to and including the cut
point γ(t0), but fails to be maximal past the cut point. Recalling the concept
of timelike geodesic ray central in Sect. 5, if γ : [0, a) → (M, g) happens to
be a timelike geodesic ray, then t0 = a in (34) and there is no cut point to
p = γ(0) along γ.

A more familiar concept is that of a nonspacelike conjugate point γ(t1) to
γ(0) along the nonspacelike geodesic γ, this roughly speaking being defined by
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the existence of a nonzero smooth Jacobi vector field along γ which vanishes
at both t = 0 and t = t1. (The situation is a bit more technical in the case of
a null geodesic, cf. [15], pp. 368–374.) Here, calculus of variation arguments
are employed, especially in the timelike case, to show that for any t with
t1 < t < a, there is a 1-parameter family of future timelike curves from γ(0)
to γ(t), each of which is longer than γ|[0,t] (cf. [15], p. 333). Additionally,
all of the curves in this 1-parameter family may be taken to be “close” to
the given geodesic segment γ|[0,t]. (Thus, for example, in the Riemannian
text [49], p. 121, the terminology “Nachbarkurve” is used which could be
translated as “neighboring curve.”) It is often written (cf. [54], p. 97) that at
the conjugate point γ(t1), infinitesimally neighboring geodesics emanating
from γ(0) refocus or intersect at γ(t1). However, the geodesics need only
refocus at γ(t1) up to second order, and thus there are not necessarily any
geodesics emanating from γ(0) which actually pass through γ(t1). Since the
calculus of variations arguments show that past a nonspacelike conjugate
point, longer neighboring curves join γ(0) to γ(t), it follows that the future
cut point to p = γ(0) along γ comes no later than the first future conjugate
point to p along γ in either the timelike or the null geodesic cases.

An attractive aspect of the differential geometry of Jacobi fields and geo-
desics is a correspondence between Jacobi fields along the given timelike
geodesic γ : [0, a) → (M, g) and variations of γ whose neighboring curves
consist of timelike geodesics. In the context of the above paragraph, suppose
that J is a smooth nonzero Jacobi field along γ with J(0) = J(t1) = 0. Then
if the traditional variation

α(t, s) = expp(t(γ
′(0) + sJ ′(0))) (35)

is constructed, (cf. [15], Prop. 10.16), all the neighboring curves t → α(t, s)
are timelike geodesics issuing from p = γ(0), and the variation vector field
V = α∗

∂
∂s |s=0 satisfies V = J , the given Jacobi field. Hence, V (t1) = J(t1) =

0. But since the smooth curve s → α(t1, s) is not a geodesic generally, the
condition V (t1) = 0 does not force α(t1, s) = γ(t1) for all s, e.g., the geodesic
neighboring curves do not necessarily actually pass through q = γ(t1), whence
the assertion neighboring geodesics “infinitesimally” refocus at q.

In the General Relativity literature (cf. [54], pp. 110–111]) a terminology
has been used that a timelike geodesic segment γ : [0, a) → (M, g) is “max-
imal” if there is no point γ(t), t ∈ (0, a), which is conjugate to p along γ.
To compare this concept geometrically with our usage of maximal, we are
considering whether there is a single future directed nonspacelike curve σ
from γ(0) to γ(t) which is longer than γ|[0,t], but with σ possibly very “far”
from γ|[0,t]. The definition given in [54] is considering whether there is a 1-
parameter family σε of future directed nonspacelike curves from γ(0) to γ(t),
each of which lies in some tubular neighborhood of γ|[0,t] and each of which
is longer than γ|[0,t].

Often the assumption of global hyperbolicity for a space-time acts as a
good substitute for a complete metric in Riemannian geometry, even though
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this paradigm is not always exact. In a somewhat startling result which con-
tradicted erroneous arguments in all the standard textbooks, Margerin [59]
gave examples to show that even for a compact Riemannian manifold, the
first conjugate locus (i.e., the set of all first conjugate points along all geodes-
ics issuing from a given point) need not be closed, even though elementary
arguments do show that the cut locus of any point (i.e., the set of all cut
points along all geodesics issuing from the given point) on a complete Rie-
mannian manifold is always closed. Of course the timelike conjugate locus of
a point in a space-time will generally not be closed, but because of the non-
imprisonment property that a nonspacelike geodesic in a globally hyperbolic
space-time must escape from any compact subset in finite affine parameter,
it may be shown that the future (or past) first nonspacelike conjugate locus
of any point in a globally hyperbolic space-time (M, g) is a closed subset of
M , cf. [15], p. 315. Also, the geometric characterization of a cut point in a
complete Riemannian manifold is faithfully mirrored for globally hyperbolic
space-times. Let (M, g) be globally hyperbolic and let q = γ(t0) be the future
cut point of p = γ(0) along the timelike [respectively, null] geodesic segment
γ from p to q. Then either one or possibly both of the following conditions
hold:

( i ) q is the first future conjugate point to p along γ, or
(ii) there exist at least two maximal timelike [respectively, null] geodesic

segments from p to q.

Denote by C+
t (p) the future timelike cut locus of p in (M, g), i.e., the set

of all timelike cut points along all future timelike geodesics issuing from p.
Correspondingly, let C+

n (p) denote the future null cut locus of p in (M, g)
consisting of all future null cut points along all null geodesics issuing from p,
and define the future nonspacelike cut locus of p by

C+(p) = C+
t (p) ∪ C+

n (p) . (36)

Employing alternatives (i) and (ii) above much as in the Riemannian the-
ory, it may be established for globally hyperbolic space-times that the null
cut locus and the nonspacelike cut locus of any point are closed subsets of
M . It was recalled in Sect. 2, equation (13), that null geodesics remain null
pregeodesics under conformal changes of the background space-time metric.
(Since conformal deformations fail to preserve timelike geodesics, the behav-
ior of timelike conjugate points or timelike cut points along a given timelike
geodesic under conformal metric deformations cannot be considered.) Even
though null conjugate points along a null geodesic will not remain invariant
under conformal change of space-time metric, it is remarkable that elemen-
tary arguments involving the space-time distance function show that global
conformal diffeomorphisms do preserve null cut points and hence the null
cut locus, cf. [15], p. 308. This may be seen as a plus for the definition of
“maximal” formulated using the space-time distance function and tying in
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with the theory of the cut locus, instead of using the alternative definition re-
called above employing the semi-definiteness of the index form and conjugate
points.

Now as mentioned at the beginning of this section, neither the more gen-
eral plane fronted waves nor gravitational plane waves themselves are globally
hyperbolic. Hence, when we first saw Fig. 2 in Penrose [71] (reproduced in the
article by Flores and Sánchez for these proceedings), while the question im-
mediately came to mind as to whether the future null cut locus formed prior
to the refocusing of the null geodesics at astigmatic conjugacy, it was not im-
mediately clear how to resolve this issue since the abstract structure theory
for the nonspacelike cut locus discussed above was only valid in the glob-
ally hyperbolic case. But the rich structure of the Killing fields and isometry
groups of these space-times entailed that explicit calculations of the geodesics
issuing from a suitably chosen point P0 = (0, 0, 0, u0) and a mimicry of the
Wronskian techniques of linear ODE theory gave sufficient insights into the
general global geodesic behavior of gravitational plane wave space-times to
compensate for the inapplicability of the abstract cut locus theory, cf. [33–36].

Let M = R
4 with global coordinates (y, z, v, u). Heuristically, one may

think of starting with the usual coordinates (x, y, z, t) of Minkowski space-
time and making the change of variables

u =
1√
2
(t− x), v = − 1√

2
(t+ x) (37)

where the second minus sign has been chosen so that ∂/∂v is past directed
null. In these coordinates, the Minkowski metric has the form

η = 2du dv + dy2 + dz2 . (38)

Definition 8. A gravitational plane wave is the smooth manifold M = R
4

equipped with a Lorentzian metric g = η +H(y, z, u)du2, where the function
H(y, z, u) has the quadratic form

H(y, z, u) = f(u)(y2 − z2) + 2g(u)yz (39)

where either f(u) or g(u) does not vanish identically.

In these geometries, the null hyperplanes

P (s) = {(y, z, v, u) ∈ R
4 : u = s} (40)

play a distinguished role, for the given space-time metric restricted to P (s) is
degenerate, and for any (y0, z0) in R

2, the plane P (s) contains the maximal
null geodesic line (which happens also to be a straight line in the usual sense)

β(t) = (y0, z0, t, s) (41)
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which is therefore free of null conjugate or null cut points. But all other
geodesics passing through (y0, z0, 0, s) lying in P (s) are straight lines which
are also spacelike geodesics. The global coordinate u : M → R plays a helpful
role in understanding the global geometry and was termed a “quasi-time
function” in [33–36], cf. the article by Flores and Sánchez in these proceedings
for a fuller discussion of the implications of this concept.

As stated above, because of the nature of the isometry group, general
results may be deduced from explicit calculations based at P0 = (0, 0, 0, u0).
Equally well, results stated most simply without introducing a lot of nota-
tional apparatus in the polarized case g(u) = 0 are generally valid, so to
simplify our discussion below we will also take g(u) = 0. A first wonderful
consequence of the quadratic form of the metric (39), which fails for more
general plane fronted waves, is that all members of this class of metrics are
geodesically complete independent of the choice of f(u) or g(u). Hence to
be technically precise, the behavior exhibited in Fig. 2 of Penrose [71] is
not “singular” behavior, but rather “caustic” behavior. Also as a result of
the quadratic form of the metric in (39), all share the property that the
Ricci tensor vanishes, Ric = 0, even though the metric will have nonzero
curvature tensor (or equivalently, some nonzero sectional curvatures) unless
f(u) = g(u) = 0 for all u. Thus recalling the discussion of the generic condi-
tion in Sect. 3, the singularity theorems of General Relativity imply the exis-
tence of what were termed “astigmatic conjugate pairs” {u0, u1} in [33–36].
Equivalently, this astigmatic conjugacy may be seen as an application of con-
jugacy theory in linear ODEs.

For the cover illustration of the Second Edition of Global Lorentzian
Geometry [15], the two dimensional universal anti-de Sitter space-time was
selected. This choice was made to emphasize that for space-times, unlike Rie-
mannian manifolds, geodesic completeness (even in the presence of constant
curvature) does not imply geodesic connectability. In the figure, points p and
q were shown such that even though q is in the chronological future of p, there
is an open neighborhood U of q in I+(p) such that no point x in U lies on any
geodesic issuing from p, let alone a future timelike geodesic. Thus even in the
presence of geodesic completeness, the exponential map of a space-time may
fail to map onto open subsets of the space-time, whereas in the Riemannian
case, geodesic completeness implies that given any q in (N, g0), there exists
a minimal geodesic segment from p to q, i.e., expp is onto.

Since geodesic connectability of the gravitational plane waves is under
consideration, put

Conn(P0, u) = {Q ∈ P (u) : there exists a geodesic
from P0 = (0, 0, 0, u0) to Q}

(42)

with P (u) the null hyperplane defined in (40). Then for a first astigmatic con-
jugate pair {u0, u1} with u0 < u1 in R, the following behavior was obtained
by direct calculation:
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(i) For Q with u0 < u(Q) < u1, there exists a unique geodesic from P0 to Q
and hence Conn(P0, u) = P (u), whence dim(Conn(P0, u)) = 3. Moreover,
P0 � Q still with u0 < u(Q) < u1 iff P0 is joined to Q by a maximal
timelike geodesic segment. (Similarly, reflecting a basic result in General
Relativity, Q ∈ J+(P0) − I+(P0) iff P0 is joined to Q by a maximal null
geodesic segment.) Hence, there are no future nonspacelike cut points to
P0 prior to astigmatic conjugacy at P (u1).

(ii) At u = u1, dim(Conn(P0, u1)) = 2 and as Conn(P0, u1) drops dimension
by 1, every R in Conn(P0, u1) is conjugate to P0 by a 1-parameter family
of geodesics. (Recall our above remarks that the geodesics issuing from
P0 only need to refocus up to second order at conjugacy in general, but
in this model the geodesics all actually refocus.)

A more concrete discussion of the timelike and null cut and conjugate loci
is most easily given in the polarized case g(u) = 0 in (39), even though
the structural results summarized here are valid generally. Again, explicit
computations show that in this special case

Conn(P0, u1) = P (u1) ∩ {z = 0} . (43)

The first (future) null conjugate locus of P0 in Conn(P0, u1) is a planar
parabola in the plane (43) which separates the first spacelike conjugate
locus from the first (future) timelike conjugate locus. (Particularly, every
future null geodesic issuing from P0 contains a conjugate point except for
the maximal null geodesic of the form (41) with y0 = z0 = 0 lying in
P (u0).) Note that while expP0

does not map onto P (u1), given any Q in
Conn(P0, u1) = P (u1)∩ {z = 0} and open neighborhood U of Q in M , there
are points R in U which are joined to P0 by geodesics; hence unlike the space-
time on the cover of [15], open sets of points are not omitted from the image
of expP0

at astigmatic conjugacy.
As mentioned in paragraph (i) above, the nonspacelike cut locus of P0 does

not occur prior to astigmatic conjugacy at P (u1), settling the question we had
wondered about during the spring of 1989. Also since a nonspacelike geodesic
fails to be maximal past a conjugate point, the nonspacelike geodesics issuing
from P0 (apart from (41)) fail to be maximal past u = u1 and hence the future
timelike (respectively, null) cut locus of P0 equals the first future timelike
(respectively, null) conjugate locus of P0 in Conn(P0, u1), cf. Fig. 13.1 on
p. 489 of [15] for a sketch of the above discussion. Hence, the future null cut
locus turned out to be a parabola in the plane Conn(P0, u1) and the future
timelike cut locus consists of all points inside the parabola in this plane.

It has been tempting while working on [33–36] to consider writing about
how the gravitational plane waves just escape providing examples for many
phenomena in General Relativity apart from their failure to be globally hy-
perbolic. From our viewpoint here, a good bit of this is explained by the
failure of the single exceptional maximal null geodesic (41) in P (u0) to reach
P (u1) unlike all the other geodesics issuing from P0. In the article by Flores
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and Sánchez in these proceedings, geodesic connectability for a wider class
of space-times is studied by variational methods. From their viewpoint, the
quadratic case (39) where a critical exponent is exactly equal to 2 is where
the variational calculus breaks down, cf. also Flores and Sánchez [39] where
it is shown that subquadratic growth does not preclude global hyperbolicity.

7 Some More Current Issues

From the viewpoint of the material discussed in this contribution, we find
that among the most interesting areas for current research is the applica-
tion of ideas from the Gromov–Hausdorff convergence theory of Riemannian
geometry to the space-time setting. Here, J. Noldus spoke at this conference
on “Lorentzian Gromov Hausdorff Theory,” reporting on recent progress, cf.
Bombelli and Noldus [23], and Noldus [64–67]. It should be emphasized that
as is often usual, more than a mere translation from the Riemannian to the
Lorentzian setting is required. At the beginning of Sect. 2, we mentioned
some concepts associated with the construction of the Busemann boundary
for a complete Riemannian manifold of nonpositive curvature, as initiated
by P. Eberlein and B. O’Neill [30]. A second interesting issue is the deploy-
ment of this concept in the space-time setting; here we refer to articles of
S. Harris [52, 53] for a recent approach to this topic. Thirdly, the splitting
theorem for null geodesic lines should be more widely understood, cf. Gal-
loway [43] for the origin of this result. Finally, we mention as a more minor
loose end related to Sect. 3, a conjecture of J. Beem that all space-times
should be causally disconnected.
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Abstract. The space of null geodesics, G, of a space-time, M, carries information
on various aspects of the causal structure M. In this contribution, we will review
the space of null geodesics, G, and some natural structures which it carries, and
see how aspects of the causal structure of M are encoded there. If M is strongly
causal, then G has a natural contact manifold structure, points are represented
in G by smooth Legendrian S2s, and the relationships between these S2s reflect
causal relationships between the points of M. One can also attempt to pass in the
opposite direction with the intention of constructing a space-time from a family of
S2s in G; this process suggests a means of attaching end-points to null geodesics
of M, and thereby constructing a causal boundary. We close by summarizing some
open questions in this general area.

1 Introduction

In Newtonian physics, the structure of space-time is fairly straight-forward.
Although there is no notion of absolute rest, there is a notion of absolute time,
and it always makes sense to say whether two events are simultaneous, and if
not, which of them occurs first. Simultaneity is an equivalence relation, and
can be used to slice space-time up into surfaces in a canonical way. Whether
the situation at one event, p, can influence that at another, q, is determined
by which of them happens at the later time (unless they are simultaneous,
in which case they are independent). However, although this is conceptually
straight-forward, it suffers from a major drawback: namely, it does not agree
with the available data.

In general relativity, on the other hand, we model space-time as a smooth
differentiable manifold, M, equipped with a smooth Lorentz metric, g. Quan-
tities associated with the metric, for example the connection, the Riemann
tensor, the Ricci tensor and others, have physical interpretations and can
be used to develop physics in this setting, and make testable - and tested! -
predictions, which to date have proven consistent with the available experi-
mental data [1]. There is also considerable activity in developing and carrying
out new experimental tests of effects which have so far been too subtle to de-
tect; two programmes of particular importance are Gravity Probe B [2] and
LIGO [3].
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However, the question of when information at one event can affect that at
another is rather less straight-forward than in the case of Newton’s universe.
The Lorentz metric implicitly provides the answer to this question: for it
determines whether a curve in space-time can describe the path of a material
particle, or influence. But in the general case, the situation can be much more
complicated than in the Newtonian one.

For example, one can find space-times which locally look perfectly ac-
ceptable, but have the property that a particle can have a closed space-time
trajectory, i.e. it can travel in such a way that it meets its own past self. The
first, and perhaps the most famous, solution of this type was discovered by
Gödel [4]. Such space-times are philosophically problematic, and the subject
of much debate [5]; they raise awkward questions about the nature of free
will, or nonlocal constraints on initial data. But even if we simply exclude
such awkward behaviour by fiat, and restrict our attention to space-times
with more acceptable behaviour, the situation remains complicated. Indeed,
if a metric is simply expressed in terms of coordinate patches, it may be a
difficult task to check whether the space-time is causally acceptable.

But considerations of causal structure are further reaching than just pro-
viding a reason for rejecting certain space-times as unacceptable. One would
also like to know whether apparently reasonable initial data has a reasonable
time evolution, or does some kind of singular behaviour occur eventually? If
so, is this singularity decently concealed or can it be naked [6]? What are
the properties of the edge, or boundary, of space-time? Even stating such
questions precisely requires a good deal of causal machinery.

So, let us recall the basic question: given two points, p and q in M are
p and q causally related in the sense that a physical influence can propagate
from one to the other? This causal structure is distinctly more primitive
than the metric structure on M, since space-times with different metrics
may have the same causal structure. It is, on the other hand, inextricably
bound up with the metric structure since two space-times have the same
causal structure if and only if they have the same null geodesics. Indeed, so
crucial to the causal structure are the null geodesics that one can take the
null geodesics themselves as primitive objects, regard points of space-time
as derived objects, and profitably study aspects of the causal structure of
space-time in this context instead.

In the remaining sections of this contribution I will describe the space of
null geodesics, and in particular its topological and geometric structure. We
will see how notions of causality in space-time are reflected in this new setting,
providing elegant reinterpretations of familiar ideas, and also a powerful way
of considering the development of wave fronts. Finally, I will suggest a means
of attaching endpoints to endless null geodesics to provide a new type of
conformal boundary.

First, however, I will give a very brief review of some causal theory, estab-
lishing standard terminology and definitions. This material is developed in
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depth in Penrose’s lecture notes on differential topology [7] and (with slightly
different conventions) in the classical text of Hawking and Ellis [8].

We denote space-time by M (and, by a standard abuse of notation, will
use M when 〈M, g〉 would be correct). The tangent bundle of M is TM,
with fibre TpM at p, and the cotangent bundle is T ∗M with fibre T ∗

p M at
p. The isomorphism beteen TM and T ∗M provided by the metric g will
be used freely. We will use the convention that the metric g has signature
(+,−, . . . ,−), and say that a vector v ∈ TpM is timelike if gp(v, v) > 0,
causal if gp(v, v) ≥ 0, null if gp(v, v) = 0 and spacelike if gp(v, v) < 0. Unless
otherwise stated, M will be four-dimensional.

Also, M is said to be time-orientable if there exists a continuous time-
like vector field t on M; we will always assume that M is time-orientable.
This does not in fact require any significant loss of generality: any space-time
which is not time-orientable has a time orientable double cover [9]. Clearly,
if t is such a timelike vector field, so is −t. We arbitrarily choose one of these
as determining the future direction. As a consequence, we can distinguish be-
tween future pointing causal vectors (whose inner product with t is positive)
and past pointing ones (whose inner product with t is negative).

A smooth curve is timelike (future pointing) if its tangent vector is every-
where timelike (future pointing), and similarly for causal, null, future or past
pointing, or spacelike.

If p, q ∈ M, then q is in the chronological future of p, written q ∈ I+(p),
if there is a timelike future pointing curve γ : [0, 1] → M with γ(0) = p, and
γ(1) = q; similarly, q is in the causal future of p, written q ∈ J+(q), if there
is a future pointing causal curve from p to q. For any point, p, I+(p) is open;
but J+(p) need not, in general, be closed. J+(p) is, however, always a subset
of the closure of I+(p).

One can use properties of these two ordering relations to define a causal
space in the absence of any notion of metric, and study causal structure in
this more general setting [10]; more recently, similar ideas have been used in
Sorkin’s causal set program of quantum gravity [11].

In addition, E+(p) = J+(p) \ I+(p) is the future horismos of p, and is
ruled by segments of null geodesics emanating from p. A null geodesic orig-
inating at p can leave E+(p) and enter I+(p) if it intersects another, or
passes a conjugate point [8] (intuitively, a point where infinitesimally sepa-
rated null geodesics starting at p cross one another). Then we have the inclu-
sion E+(p) ⊆ ∂I+(p) = ∂J+(p). Denoting by N+(p) all those points lying on
a future pointing null geodesic starting at p, we also have E+(p) ⊆ N+(p).
In general, neither of N+(p) or ∂I+(p) is a subset of the other.

If K ⊂ M, then D+(K) is the set of all points p such that any past-endless
causal curve through p intersects K. D+(K) is called the future domain of
dependence of K, and is the region where physics is entirely determined by
data on K (in the absence of material which allows faster-than-light effects
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to propagate), since no material influence can reach any element of D+(K)
without passing through K.

One can use the causal relations I+ and J+ to impose conditions on
space-time. Indeed, Carter has shown [14] that there is an infinite hierarchy
of distinct conditions, each implied by all its successors, which can be imposed
in terms of causal relations. I will restrain myself to listing a few of immediate
relevance. Each of the following conditions is implied by its successor.

1. If there is no point p such that p ∈ I+(p), M is said to satisfy the
chronological condition.

2. A space-time M which has no point p with a non-degenerate causal curve
which starts and ends at p is said to satisfy the causal condition.

3. If each point p has arbitrarily small neighbourhoods which any causal
curve intersects in a single component, M satisfies the condition of strong
causality.

4. If M is causal and remains causal under small changes of g, it is stably
causal.

5. If M is strongly causal and J±(p) is the topological closure of I±(p) for
every p ∈ M (so E±(p) = ∂I±(p), then M is causally simple.

6. If there is a spacelike surface S (i.e. a surface of codimension one whose
tangent plane at each point contains only spacelike vectors) which every
endless causal curve intersects in exactly one point, M is globally hyper-
bolic, and is the topological product of S with R. S is called a Cauchy
surface for M.

We note that all of these concepts depend only on the conformal class of
g, i.e. g may be replaced by Ωg, where Ω is a strictly positive function on
M, without any effect on causal properties.

2 Space of Null Geodesics

Even from the brief review above, it is clear that null geodesics are funda-
mental to the causal structure of M. Motivated by this observation, we can
consider the space of all null geodesics, and in particular investigate the re-
lationships between its topology and geometry and the causal structure of
M.

In the following development, we will use the cotangent bundle of M; for
some purposes, it would be more natural to use the tangent bundle and the
geodesic flow on the tangent bundle. Indeed, this approach has been used
in the study of the space of geodesics of a Riemannian manifold [12] and
in the more general case of the space of geodesics of a manifold with affine
connection [13]. However, in the section after this one I wish to make use of
some structures which naturally arise on the cotangent bundle, and so will
work with the cotangent bundle from the beginning. As mentioned above, free
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use will be made of the isomorphism which g gives between the tangent and
cotangent bundles. We will now consider how the cotangent bundle structure
provides natural structure on the space of null geodesics.

So let T ∗M be the cotangent bundle of M, and π : T ∗M → M the
canonical projection. There are two vector fields on T ∗M of interest.

Let α ∈ T ∗M, and define f : R → T ∗M by f(t) = tα. Then ∆, the
Euler field, is defined by ∆(α) = f∗(∂/∂t)(1), or, more concretely, if α has
coordinates (qi, ni) then ∆(α) is ni∂/∂ni.

The other vector field we require is the geodesic vector field, XG. To define
this on T ∗M we first define the Hamiltonian function H : T ∗M → R which
sends each covector to its squared length given by g, and then XG is the
corresponding Hamiltonian vector field determined by iXG

(ω) = −dH. In
terms of the usual coordinates,

XG = ni ∂

∂qi
− Γ i

jkn
jni

∂

∂nk

where indices are raised and lowered using g, and Γ i
jk is the usual Christoffel

symbol.
If c : R → M is a smooth curve, given in coordinates by c(t) = qi(t), then

it has a natural lift to T ∗M given by (qi(t), ni(t)), where ni = gij q̇
i. This is

an integral curve of XG iff c is an affinely parameterised geodesic in M.
Now, we can restrict our attention to N∗M, the subset of T ∗M given

by the future pointing null vectors (excluding the zero vector at each point).
Since each of ∆ and XG are tangent to N∗M, we can regard them as vec-
tor fields on this manifold. Furthermore, since the two are never linearly
independent, the vector space spanned by XG and ∆ at each point gives
a two-dimensional distribution on N∗M, i.e. a two-dimensional subspace of
T (N∗M) at each point. In addition, since [∆,XG] = XG, this distribution is
integrable, i.e. N∗M is foliated by two-surfaces whose tangent surfaces are
the subspaces spanned by XG and ∆ at each point [15]. We can therefore
consider the quotient space of integral surfaces.

It is perhaps more geometrically intuitive to construct this quotient space
in stages. First, we can take the quotient space of integral curves of ∆ in
N∗M, resulting in the bundle of future pointing null directions, PN∗M.
Now, although XG itself does not descend to this quotient space, the one-
dimensional distribution of subspaces spanned by XG does, and we again
obtain a distribution. This time, the integral curves are the lifts of null geo-
desics in M to the bundle of null directions of M, and the quotient space is
obtained by identifying points on the same (lifted) null geodesics. We there-
fore call this quotient space the space of null geodesics, and denote it by
N .

Alternatively, we can take the quotient of N∗M under the action of XG,
to obtain the space of scaled null geodesics, and then take the further quotient
which corresponds to forgetting the scaling.
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Now that N has been provided with a topology, we can consider conver-
gence of a sequence of null geodesics as curves in space-time. So let γn be a
sequence of points in N , and denote by Γn the corresponding curves in M.
Suppose γ ∈ N . Then, since a neighbourhood of γ in N is the image under
the projection from PN∗N of a neighbourhood of a point on the lift of Γ to
PN∗N , we see that γn → γ if there is a sequence of points pn ∈ Γn and a
point p ∈ Γ such that pn → p, and the tangent direction to Γn at pn tends
to the tangent direction to Γ at p. More naively, two null geodesics are close
if they pass close to each other and the tangent directions are also close.

Note that this is not the topology we obtain by insisting that, for any
neighbourhood U of Γ , each Γn eventually lies inside U - it may well be that
for each Γn there are points which are very far from Γ .

Example 1. Let M be the Minkowski space, with the usual coordinates
(t, x, y, z), and let γn be the null geodesic through the origin with tangent
(1, cos(1/n), sin(1/n), 0). Then the limit null geodesic has tangent (1, 1, 0, 0),
but the distance between the points where Γn and Γ intersect the surface
t = T can be made arbitrarily large by taking T large enough.

Furthermore, although Frobenius’ theorem guarantees the existence of
integral surfaces, and hence of a quotient space which inherits a topological
structure, this need not in general be a manifold.

Example 2. Let M
2 be two-dimensional Minkowski space, with the usual co-

ordinates (t, x), and let M be obtained from M
2 by identifying t with t + 1

and x with x +
√

2 for all x, t. Then the space of null geodesics, N has two
components: L, the space of left directed null geodesics, and R, the space of
right directed ones. All right directed null geodesics are parallel, and each is
dense in M. As a consequence, each point of R is dense in R, and similarly
for L.

It is a useful exercise to investigate the structure of N for two-dimensional
toroidal space-times, where we identify x with x+ α for various values of α.

3 Structures on the Space of Null Geodesics

Although N as a topological space need not in general be compatible with
any manifold structure, we can guarantee that it is in fact a quotient manifold
of N∗M by imposing a standard causal condition.

Theorem 1. Let M be strongly causal. Then N , the space of null geodesics
of M, inherits a manifold structure from N∗M.

Proof. If M is strongly causal, then every point in M has arbitrarily small
neighbourhoods which null geodesics intersect in a single connected compo-
nent. As a consequence, when the geodesics are lifted to the bundle of null
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directions over M, this is also true of the lifts. Then the distribution is reg-
ular, and so the quotient space is a quotient manifold [15]. ��

In general, if M is n-dimensional, T ∗M is 2n-dimensional, so that N∗M
has 2n− 1 dimensions, PN∗M has 2n− 2, and so N has 2n− 3 dimensions.
In the standard case, n = 4 and N is five-dimensional.

Once we can guarantee that N is a manifold, we can look for other geo-
metric structures on it. In fact, much of the geometry of T ∗M descends
to N . The canonical one-form θ on T ∗M is defined at α ∈ T ∗M by: for
v ∈ Tα(T ∗M), θα(v) = α(π∗(v)). Then the symplectic form ω on T ∗M is
defined by ω = dθ.

If M has local coordinates {qi}, and T ∗M has associated coordinates
{qi, ni}, then θ = nidqi and ω = dni ∧ dqi.

The canonical form is the annihilator of a field of hyperplanes on T ∗M
which is called a contact structure, see Appendix 4 of Arnold’s classical me-
chanics text [16] for an exposition of contact geometry. Although the form
itself is not preserved by dilatations, the field of hyperplanes is, and it is also
preserved by the geodesic flow. Consequently, one obtains a field of hyper-
planes on N , and in fact also a contact structure on N . Indeed, there is a
one-form on N whose pull-back to N∗M is proportional to θ, and hence de-
termines the same distribution of hyperplanes, and such a form is a contact
form for N .

One can also consider the space N ′ of scaled null geodesics and in this
case use ω to obtain a symplectic structure on N ′ [17]; we will not make use
of that structure here.

So let γ be a point on a smooth curve in N , and let j be the tangent to
that curve at γ. What does it mean for j to lie in the contact hyperplane
at γ?

The vector j at γ determines a Jacobi field, J , along Γ in M (up to
a multiple of the tangent to Γ ). Denoting the tangent covector to Γ by
n, we then see that j lies in the contact hyperplane at γ iff n(J) = 0 at
some (and hence any) point of Γ . In other words, the vector connecting two
infinitesimally separated null geodesics in N lies in the contact hyperplane if
and only if the vector connecting points on the null geodesics as curves in M
is orthogonal to the tangent to those null geodesics. We say that such null
geodesics are abreast.

Penrose has given a detailed exposition of the meanings of θ and ω in
the context of null congruences in space-time [18]; the interested reader is
referred to this work for more detail.

Clearly, a two-dimensional submanifold of N corresponds to a smooth
two-dimensional family of null geodesics in M, i.e. a three-dimensional sur-
face (perhaps with singularities) ruled by null geodesics.

Note, in passing, that such a surface need not be a null hypersurface:
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Example 3. The surface in four-dimensional Minkowski space (with the usual
coordinates) consisting of all points on the null geodesics with tangent vector
(1, 1, 0, 0) through the surface given by t = z = 0 is the timelike surface z = 0.

Also, recall that a surface whose tangents all lie in the hyperplanes of the
contact structure is called a Legendre surface [16]. Then we finally have

Theorem 2. Let Σ be a two-dimensional submanifold of N . Then iff Σ is
a Legendre surface in N , the surface Σ̃ in M ruled by the null geodesics of
Σ is hypersurface-orthogonal; i.e. Σ̃ is an orthogonal null congruence to its
intersection with any spacelike three-surface in M.

Proof. From the above discussion we see that a vector connecting neigh-
bouring points of Σ lies in the contact hyperplane if and only if the vector
connecting points of nearby null generators of Σ̃ is orthogonal to the tan-
gents to the null generators. Hence the tangent vector to the intersection
of a spacelike three-surface with Σ̃ is orthogonal to the tangent to any null
generator of Σ̃, i.e. Σ̃ is an orthogonal null congruence to this intersection.

��

In particular, if p ∈ M, then we can find the subset of N consisting of all
null geodesics through p. This subset is the image of the S2 fibre over p in
the bundle of null directions over M, and is itself a smooth S2 in N , which
we denote P ; the S2 in N corresponding to a point of M is called the sky
of that point. Every sky is a Legendre surface in N ; but a Legendre surface
need not be a sky.

Even though the space of null geodesics of a strongly causal space-time is
naturally a manifold, it may still have pathologies: in particular, it may fail
to be Hausdorff.

Example 4. Consider Minkowski space with the usual coordinates (t, x, y, z),
and let its cotangent bundle have coordinates (t, x, y, z, pt, px, py, pz). Let M
be Minkowski space minus the origin. Then the sequence of null geodesics
given by the covectors (0, 1/n, 0, 0, 1, 1, 0, 0) has as limit points both the null
geodesic determined by the covector (1, 1, 0, 0, 1, 1, 0, 0) and that determined
by (−1,−1, 0, 0, 1, 1, 0, 0). (In Minkowski space these covectors determine the
same null geodesic, which passes through the origin.)

Such a pathology cannot arise in the case where M is globally hyperbolic.
In fact, if S is a Cauchy surface for M, then S inherits a Riemannian structure
from g, and N is diffeomorphic to the tangent unit sphere bundle to S with
this Riemannian metric; furthermore, the contact structure on N agrees with
the natural one on the tangent unit sphere bundle of S. In this case, being
the tangent unit sphere bundle of a Hausdorff (Riemannian) manifold, N is
automatically Hausdorff.

This immediately tells us that any space-time whose space of null geodes-
ics is not Hausdorff cannot be globally hyperbolic: so in particular, neither
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Minkowski space with a point removed, nor the impulsive gravitational plane
wave space-time [19] can be globally hyperbolic.

Global hyperbolicity is a sufficient, but not a necessary condition for N to
be Hausdorff. For example, the region of Minkowski space given by x2 + y2 +
z2 < 1 has a Hausdorff space of null geodesics, but is not globally hyperbolic.

4 Insight into Space-Time

A natural question to ask is how the causal structure of M is reflected in N .
We will use the convention of taking lower case Latin letters to refer to

points of M, and the corresponding upper case letter to represent the sky of
a point; also, a lower case Greek letter will represent a point of N , and the
corresponding upper case letter the corresponding null geodesic curve in M
(or, more precisely, its image).

The situation is simplest in Minkowski space, where N is projective null
twistor space, excluding the line at infinity, PN

I , which has been extensively
studied from the point of view of projective geometry [18]. In this case N has
a great deal of extra structure; in particular, it is naturally a real submanifold
of CP

3, and skies are characterised as the holomorphic surfaces with topology
S2.

Then if x1, x2 ∈ M, x1 and x2 lie on a common null geodesic (i.e. are null
separated) iff X1 ∩X2 is non-empty; and dually, if γ1, γ2 ∈ N , then γ1 and
γ2 lie on a common sky iff Γ1 ∩ Γ2 is non-empty.

Null separation, then, is neatly described in this picture, and there is a
natural duality between points and null geodesics in space-time and points
and skies in the space of null geodesics.

But it is not only null separation which can be given an elegant charac-
terization. PN

I is topologically R
3 × S2, and it is possible to define a linking

number L for two skies in PN
I . This linking number may be computed in

Minkowski space. Given p and q, let S be a surface of constant time containing
p; then the light cone of q, N(q), intersects S in an S2 in general. The linking
number of Q round P is simply the winding number of N(q) ∩ S round p
in S. By the appropriate choice of orientation and sign convention [20], we
have p ∈ I±(q) iff L(P,Q) = ±1.

In more general, curved, space-times, we lose much of the structure of
twistor theory: in compensation, new phenomena arise.

As before, we observe that a Jacobi field, J , along the null geodesic Γ
arising from a one-parameter family of null geodesics in M determines a
tangent vector, j, at γ ∈ N , and vice versa. Furthermore, J is tangent to Γ
at p if and only if j ∈ TγP . Recall that two points, p and q are conjugate [8]
along Γ if and only if there is a non-trivial Jacobi field along Γ which is
tangent to Γ at p and q. Because of this, we have:
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Theorem 3. Let x, y ∈ M lie on the null geodesic Γ . Then γ ∈ X ∩ Y .
Furthermore, X and Y interesect transversally in γ unless x is conjugate to
y along Γ , and in this case the dimension of TγX ∩ TγY is the number of
linearly independent Jacobi fields along Γ vanishing at both x and y.

The property of Minkowski space, that points p and q are chronologically
related iff P and Q are linked in PN

I , fails in general, even in globally hyper-
bolic space-times. It still holds if p and q are close together, in the following
sense:

Theorem 4. Let M be strongly causal, and for p ∈ M let U be a causally
convex neighbourhood of p ( so U is geodesically convex, and causal curves
intersect U in a single connected component ). Then denoting the space of null
geodesics of U by N (U), chronological relations of points in U are encoded
in the linking of their skies in N (U) in just the same way as in Minkowski
space.

In other words, linking of skies still encodes chronological relations locally;
but globally it need not. If N+(p) has self-intersections, there can be points
q ∈ I+(p) such that Link(P,Q) = 0. In fact, if we use the equivalence of N
with the unit tangent sphere bundle to S in a globally hyperbolic space-time
with Cauchy surface S, one can have points p and q with q ∈ I+(p) but such
that P and Q can be simultanously deformed to tangent spheres [21]. If S
is a Cauchy surface containing p, this will occur when N(q) ∩ S has winding
number zero round p.

So there is no sense in which topological linking encodes causal relations
in general.

At least, not in four (or more) space-time dimensions. If we consider the
case of three space-time dimensions, the situation is rather different. As is
well known, topology in three dimensions has special properties; in particular,
it is possible to have two S1s embedded in S3 in such a way that they have
linking number 0, but are nevertheless non-trivially linked [22]. One particular
example of such a link is the Whitehead link; and the example alluded to
above reduces precisely to the Whitehead link if we reduce the number of
spatial dimensions by one.

Conjecture 1. Let M be a globally hyperbolic space-time with two spatial
dimensions, and Cauchy surface S diffeomorphic to R

2, so that N is diffeo-
morphic to R

2 × S1. Then points p and q are causally related if and only if
their skies cannot be simultaneously deformed to unit tangent spheres of S.

A proof of this conjecture in a non-trivial class of space-times has been
found [23], although the general case remains elusive.

To return to the more physically interesting case of four-dimensional
space-time, we see that the problem is caused by light cones developing
self-intersections. In fact, the apparatus we now have available provides a
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powerful tool for investigating just how the light cone can develop in a gen-
eral space-time. This provides information on the types of caustic that can
arise due to gravitational lensing.

First, we recall that, by Theorem 2, a Legendre surface Σ in N corre-
sponds to a hypersurface-orthogonal null hypersurface Σ̃ in M; but saying
that Σ̃ is hypersurface-orthogonal is just saying that it is the wave front
obtained by instantaneously lighting up an initial space-like two-surface and
tracing out the resulting light rays. So Legendre surfaces of M correspond to
wave fronts in M. Furthermore, if S is a Cauchy surface of M, and we con-
sider N as the unit tangent sphere bundle to S, then the natural projection
of Σ to S gives the intersection of Σ̃ with S; this projection is a Legendre
map. We can then deduce from the properties of such mappings presented by
Arnold [16] that the only singularities which are present in the intersection of
a wave front with a Cauchy surface and stable under small perturbations are
those of type A2 or D4. In particular, these are the only stable singularities
which appear on a light cone at a given instant.

One can alternatively carry out an analysis in terms of the full structure
of the cotangent bundle of space-time [24]. Such an analysis allows for the
investigation of other properties of wave front evolution, but at the expense of
requiring far more technical machinery. An extensive review of gravitational
lensing and wave front evolution has now been provided by Perlick [25].

5 Recovering Space-Time

We have considered how points of M are represented in N as skies, and seen
how this gives a new approach to considerations of the causal structure of
M. A natural question to ask is whether we can use such a setting to define
a space-time as a family of skies in a suitable five-manifold; and in such a
setting, to look for characterizations of a space-time being conformal to an
Einstein vacuum, or to a space-time satisfying a standard energy condition.

Unfortunately, such a characterization is not (yet) available. Indeed, there
may be problems even with recovering the original space-time if we know all
the skies in N .

Example 5. Let M be the Einstein static universe. Then the space of null
geodesics is precisely that of compactified and identified Minkowski space [18],
and all the skies of points in M are skies of points of compactified, identified
Minkowski space.

The phenomenon at the heart of this problem is that the null cone of
a point in the Einstein static universe converges back to a point again; so
distinct points can have the same sky. Clearly, this is a bad thing from the
point of view of regarding a space-time as arising from a set of skies.

In fact, even if the null cone does not converge back exactly to a point,
there may still be a problem. For suppose p is a point of M, and pn is a
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sequence of points which remain strictly outside some neighbourhood K of p,
but have the property that if U is a neighbourhood of p then for n sufficiently
large, all the null geodesics through pn pass through U . We call a space-time
exhibiting this behaviour a refocussing space-time.

Then in N , no matter how small a neighbourhood V of P we choose, there
will be infinitely many Pn lying inside V . In this case, even if all the points
of M have distinct skies, N cannot provide M with the correct topology.

Fortunately, this phenomenon cannot occur in a large class of space-times
of interest.

Theorem 5. Let M be globally hyperbolic, with non-compact Cauchy surface
S. Then M cannot be refocussing.

Proof. In brief outline: We can suppose without loss of generality that each
pn ∈ I+(p). Now, if the entire light cone of pn focusses back into a small
neighbourhood of p, then all null geodesics through pn must meet a conjugate
point within some finite time. In this case, it follows that all of S lies in
J−(pn), which is impossible because J−(pn) ∩ S must always be compact.

��

If we are given the set of all skies in the space of null geodesics, N , of
a globally hyperbolic space-time, M, with non-compact Cauchysurface, S,
then we can reconstruct the original space-time up to a conformal factor.

First, we have M simply as the point set of all skies in N .
Next, if P is a sky in N , we take a neighbourhood U of P , sufficiently

small, that any two skies in P intersect transversally. Then the set of all skies
lying in U give a neighbourhood, V , of p. Neighbourhoods constructed in
such a way give a basis for the topology on M.

Recovering the differentiable structure of this neighbourhood is a little
more involved. First, we construct the Grassmannian bundle of two-planes
over U ; then we lift each sky in U to this bundle by lifting γ ∈ Q to TγQ.
This gives a six-dimensional submanifold Ũ of our Grassmannian manifold
which is (because of the smoothness of the geodesic flow and the absence of
non-transversal intersections) diffeomorphic to the bundle of null directions
over V . Each sky lifts to the fibre over a point of V , and so taking the
quotient manifold of lifted skies (fibres here are compact, so the distribution
is automatically regular) gives us back V as a differentiable manifold.

It is now a simple matter to find the metric, g, up to a conformal factor.
Given a point γ ∈ U , we obtain a curve in Ũ given by the tangent planes to
all skies in U containing γ. This projects to a curve in V under the quotient
above, namely Γ . But once we know all the null geodesics in V , we have the
null cone at each point, and as is well known [8] this determines the metric
up to a conformal factor.

We can then recover M by constructing a neighbourhood of each point
by this means, and using the overlap maps induced by the intersections of
neighbourhoods of skies in N .
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Alternatively, we can make use of an alternative topology on M which
was observed by Hawking et al. [26] to capture all of the relevant structure
of M.

Again, we begin with a M as the point set of skies in N , but no other
structure, and consider a small neighbourhood U of the sky P in M. This
time, we take as a neighbourhood of p ∈ M all those skies in U which are
nontrivially linked to P . This gives a basis for the topology on M generated
by neighbourhoods of the form (V ∩ I(p))∩{p}, where V is a neighbourhood
of p in the original manifold topology, and I is determined by the chronol-
ogy relation of the original Lorentz metric on M. This topology, called the
path topology, uniquely determines the causal, differential, and conformal
structure of M.

Thus, at least in the case of non-refocussing space-times, it is possible to
regard space-time as given by a structure (namely the set of skies) in the
space of null geodesics. In the final section we will consider an approach to
providing null geodesics with endpoints, in an attempt to provide space-time
with a causal boundary.

6 A (New?) Causal Boundary

Let M be a strongly causal space-time, and let γ be a null geodesic of M.
How can we attach a future endpoint to Γ? The idea behind what will be
done here is to find all null geodesics which focus at the same point at infinity,
and treat this set of null geodesics as the light cone of the (common) future
endpoint of these null geodesics.

To this end, we let s be an affine parameter for Γ , so that p(s) traces
out Γ as s ranges from −∞ to ∞. (By an appropriate choice of conformal
factor, we can assume that all null geodesics have affine parameters with
this range of values [27].) Then as s increases, TγP (s) traces out a curve
in the Grassmannian manifold of two-dimensional subspaces of TγN . Since
Grassmannian manifolds are compact, this curve has a limit point as s → ∞.

This limiting two-plane is supposed to be the tangent plane to the sky
of the future endpoint of Γ . However, it need not be unique. One would
expect that TγP (s) would settle down if curvature decayed along Γ ; ascer-
taining appropriate conditions for uniqueness is the subject of current work.
Thus uniqueness should be related to the asymptotic flatness of the (perhaps
conformally rescaled) space-time.

Then at worst, we have some subset - denote it by Bγ - of TγN for each
γ ∈ N . In general, this need not be a distribution; its dimension may vary
from point to point, and it need not be continuous. Now regard γ1 and γ2

as equivalent if they can be connected by a curve whose tangent everywhere
lies in some Bγ . By definition, null geodesics which are equivalent under this
relationship focus to a common future endpoint.
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Then we obtain a topological space of future endpoints to the null geodes-
ics of M by taking the quotient space under this relation: call this topological
space B+ (for future boundary). An equivalence class (point at infinity) will
be denoted by B when we are thinking of it as a subset of N , and by b
when we think of it as a point of the boundary of M. What we still lack is a
topology for M∪ B+; so how do we decide if a sequence of points pn in M
converges to a point, b, of B+?

We require two conditions on the sequence of points pn to say that pn → b.
First, pn should eventually leave any compact set in M; and second, the light
cone of pn should approach N−(b) (which is, by definition, the set of null
geodesics defining b). To make this latter condition precise, we require that
there exists γ ∈ B and γn ∈ Pn such that γn → γ, and the limit set of Tγn

lies in Bγ as n → ∞.
This certainly works well in certain simple cases.
If M is the Einstein static cylinder, then all null geodesics share a single

future endpoint, which lies to the future of every point of M.
More generally, if M can be conformally embedded into a strongly causal

space-time as a subspace with compact closure, then each null geodesic will
acquire a future endpoint. Furthermore, each of the equivalence classes de-
fined above will be a subset of the sky of such a future endpoint. If we further
require that M be globally hyperbolic, then the equivalence classes will coin-
cide with the skies of endpoints, and the boundary points are precisely those
of the usual causal boundary [10].

So this attempt at constructing a boundary is well behaved in certain
simple cases where we have a good idea of what the boundary “ought” to be.
Furthermore, properties of space-time which complicate the intuitive notion
of boundary also complicate this construction.

Note that one can similarly attempt to add a past endpoint to each null
geodesic, and thereby construct a past boundary, B−. However, the usual
problem of identification of appropriate points in the past and future bound-
ary remains.

In conclusion, I will list some of the questions which arise in the context
of this proposal:

1. How is this boundary related to the Geroch, Kronheimer and Penrose
boundary?

2. For example, if null geodesics lie in the same equivalence class, need they
have the same chronological past in general?

3. How is this boundary related to the Geroch boundary [28]? Is his equiv-
alence relationship strictly weaker than this one, vice versa, or are they
incomparable?

4. Does good/bad behaviour of the limiting “distribution” match to good/
bad asymptotic properties of the original space-time?

5. In particular, can we gain any insight into space-time in the vicinity of a
strong curvature singularity from this point of view?
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Abstract. In this contribution we are concerned with global properties of geodesics
on semi-Riemannian manifolds obtained by studying the variational properties of
the action functional. Applications to physically meaningful spacetimes in General
Relativity will be presented.

1 Introduction

We consider a semi-Riemannian manifold (M, g), where M is a smooth,
connected, finite dimensional differentiable manifold and g is a metric tensor
on M. For any z ∈ M, the tensor g defines a bilinear form g(z) on the tangent
space TzM at z to M such that g(z) is symmetric and nondegenerate. The
number of negative eigenvalues of the bilinear form g(z) does not depend on
z; this number is called the index of the metric g and it is denoted by ν(g).
The semi-Riemannian manifold (M, g) is called Riemannian if ν(g) = 0 and
it is called Lorentzian if ν(g) = 1. We refer to the books [4, 46, 55, 68] for
the basic properties of semi-Riemannian manifolds and physical properties of
spacetimes.

A smooth curve γ : I −→ M, where I is an interval of the real line R, is
called a geodesic if

∇sγ̇ = 0 , (1)

where ∇s denotes the covariant derivative along γ induced by the Levi-Civita
connection of g and γ̇ is the tangent vector field along γ. In local coordinates,
equation (1) reduces to the system of dim(M) nonlinear second order differ-
ential equations

γ̈k + Γ k
ij(γ)γ̇iγ̇j = 0 , k = 1, . . . ,dim(M) ,

where the Γ k
ij are the Christoffel symbols of the metric g. In this paper we

shall focus our attention on the problem of the existence of one or multiple
geodesics joining two arbitrary points of a semi-Riemannian manifold.

Definition 1. A semi-Riemannian manifold (M, g) is said to be geodesically
connected if any pair of points p and q of M is joined by a geodesic for the
metric g.

A. Masiello: Some Variational Problems in Semi-Riemannian Geometry, Lect. Notes Phys.
692, 51–77 (2006)
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For Riemannian manifolds, the problem of geodesic connectedness is essen-
tially solved. Indeed, as a consequence of the Hopf–Rinow Theorem, any met-
rically complete (or, equivalently, geodesically complete) Riemannian man-
ifold is geodesically connected. Moreover, any pair of points is joined by
infinitely many geodesics if the manifold M is noncontractible.

The problem of geodesic connectedness is much more delicate for semi-
Riemannian manifolds, and actually there are only few intrinsic results. More-
over, many meaningful counter-examples to the geodesic connectedness of a
Lorentzian manifold are known. We mention the remarkable and in some
way surprising result by Calabi and Markus who showed in [12], see also [55,
p. 248], that for dim(M) ≥ 3 a Lorentzian space-form with positive curvature
is geodesically connected if and only if it is not time-oriented. For instance
the de Sitter spacetime is not geodesically connected. Counter-examples to
the geodesic connectedness are also contained in the following classes of
Lorentzian manifolds, see [55]:

– compact Lorentzian manifolds: the Clifton–Pohl torus;
– geodesically complete Lorentzian manifolds: the de Sitter and the anti-

de Sitter spacetimes;
– globally hyperbolic Lorentzian manifolds: again the de Sitter spacetime.

The first global existence results on geodesics on Lorentzian manifolds (locally
the geodesic connectedness always holds in a convex neighborhood of a point)
concerned timelike and lightlike geodesics, because of their physical meaning.
The Avez–Seifert Theorem states that any pair of causally related points in a
globally hyperbolic spacetime is joined by a causal geodesic [4,55]. Moreover,
due to the application to the multiple image effect in gravitational lensing,
the variational theory of light rays and the extension to General Relativity of
the classical Fermat principle has been very intensively investigated. In this
direction see the paper by Uhlenbeck [67], the papers [27, 34, 39, 41] and the
recent living review by Perlick [59]. In this paper we present some results on
the geodesical connectedness of some classes of semi-Riemannian manifolds
obtained in the last years, using variational methods for strongly indefinite
functionals.

It is well known that the geodesics joining two points on a semi-Riemann-
ian manifold satisfy a variational principle. Let (M, g) be a semi-Riemann-
ian manifold; then the geodesics joining two points p and q on M are the
stationary points of the action integral

f(z) =
∫ 1

0

g(z(s))[ż(s), ż(s)]ds (2)

defined on the infinite dimensional Sobolev manifold Ω1,2(p, q;M) of the
curves z(s) : [0, 1] −→ M such that z(0) = p, z(1) = q, z is continuous and
its derivative ż is square-integrable with respect to some Riemannian metric
on M (this definition does not depend on the choice of the Riemannian
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metric). It is well known that the space Ω1,2(p, q;M) is equipped with the
structure of an infinite dimensional manifold modelled on the Sobolev–Hilbert
space H1,2([0, 1],Rn) of absolutely continuous curves in Rn, n = dim(M),
having square-integrable derivative. If z ∈ Ω1,2(p, q;M), the tangent space
TzΩ

1,2(p, q;M) at z is given by

TzΩ
1,2(p, q;M) = {ζ ∈ Ω1,2((p, 0), (q, 0);TM) : π ◦ ζ = z} , (3)

where TM denotes the tangent bundle of M and π : TM → M is the bundle
projection. In other words TzΩ

1,2(p, q;M) consists of the vector fields ζ along
z of class H1,2 that vanish at the end-points.

The study of the global properties of geodesics on a Riemannian manifold,
such as existence and multiplicity and also the existence of a closed geodesic,
and the relations between the set of such geodesics and the topology of the
underlying manifold M, have played a central role in the XX century in the
development of what is called now the Calculus of Variations in the Large
and in particular in the Critical Point Theory, the study of the critical points
of a functional which include not only global or local minima (or maxima),
as in the classical Calculus of Variations, but also saddle points. In particular
the min-max Ljusternik–Schnirelmann Theory and Morse Theory have been
successfully applied to the action integral in Riemannian geometry, and the
problems of the existence and the multiplicity of closed geodesics on compact
Riemannian manifolds have been recently solved, see [48]. Moreover many
relations between curvature and topology of a complete Riemannian manifold
can be obtained using Morse Theory. In a certain sense the action integral of
a complete Riemannian manifold is the functional where global variational
methods work best.

The situation drastically changes if we pass to semi-Riemannian mani-
folds, in particular to Lorentzian manifolds. Indeed, the action integral (2) for
semi-Riemannian metrics is one of the worst functionals to apply variational
methods. It is an example of a strongly indefinite functional, characterized
by the following problems:

– f(z) is unbounded both from below and from above, so a critical point of
f cannot be found by a minimization (or a maximization) argument as for
the action integral in Riemannian geometry.

– The Morse index (respectively coindex) of any stationary point z of f is
equal to +∞. This means that the second derivative f ′′(z) at the critical
point z is negative (respectively positive) definite on an infinite dimensional
subspace of the tangent space TzΩ

1,2(p, q;M). Thus any critical point of f
in the semi-Riemannian case is an infinite dimensional saddle point. This
fact makes more difficult the search of critical points by the methods of
the gradient flow, see Sect. 2.

– The action functional f does not satisfy the Palais–Smale condition, see
Sect. 2.
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Critical Point Theory for strongly indefinite functionals has been the object
of several deep studies in the last twenty-five years, and it has many ap-
plications to the study of nonlinear differential equations. We refer to the
books [1,19,52,64] for abstract results on strongly indefinite functionals and
applications to Hamiltonian systems, nonlinear hyperbolic equations, wave
maps and symplectic geometry, and to [51] for an introduction to variational
methods oriented towards the study of geodesics on Lorentzian manifolds.

In this paper we shall present a review of critical point theorems and
some applications to geodesics on semi-Riemannian manifolds. The paper is
organized as follows. In Sect. 2 a review of variational methods is presented. In
Sect. 3 the abstract results are applied to geodesics on Riemannian manifolds
and in Sect. 4 to stationary Lorentzian manifolds, the two classes of manifolds
for which the geodesic problem is not strongly indefinite or can be reduced to
a not strongly indefinite one. In Sect. 5 the geodesic problem for orthogonally
splitting Lorentzian manifolds is considered. In Sect. 6 results for physically
relevant spacetimes of General Relativity are stated. Finally in Sect. 7 other
directions in the study of variational properties of semi-Riemannian manifolds
are presented.

2 A Review of Variational Methods

We present in this section the main results of Critical Point Theory, for the
proofs see [19,51,52,64].

Let (X,h) be a smooth (C∞), possibly infinite dimensional Riemannian
manifold and f : X → R a C1 functional. Then a point x ∈ X is said to
be a critical point of f if f ′(x) = 0. A number c ∈ R is called a critical
value if there exists a critical point x of f such that f(x) = c, otherwise c
is called a regular value. Let x be a critical point of f , denote by TxX the
tangent space at x to X and assume that f is of class C2. Then the Hessian
Hf (x) : TxX × TxX → R at x is defined in the following way. For any
ξ ∈ TxX we set

Hf (x) [ξ, ξ] =
(
d2f(η(s))

ds2

)

s=0

(where η : ]− ε, ε [ → X is a smooth curve such that η (0) = x, η̇(0) = ξ) and
then we extend Hf (x) by polarization to any pair of tangent vectors. The
Morse index m(x, f) of a critical point x of f is the maximal dimension of
a subspace of TxX where Hf (x) is negative definite. The augmented Morse
index m∗(x, f) is defined as m∗(x, f) = m(x, f) + dim

(
kerHf (x)

)
, where

kerHf (x) = {ξ ∈ TxX : Hf (x)[ξ, ξ′] = 0,∀ξ′ ∈ TxX} .

Clearly, the Morse index and the augmented Morse index may be equal to
+∞ if X is an infinite dimensional Riemannian manifold. The critical point
x is said to be nondegenerate if the linear operator f ′′(x) : TxX → TxX
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induced by Hf (x) on TxX, equipped with the Hilbert space structure h(x),
is an isomorphism. The functional f is said to be a Morse function if it is of
class C2 on the manifold (X,h) and all its critical points are nondegenerate.

In order to study the variational properties of geodesics as critical points
of the action integral f defined in (2), it is essential to evaluate the Hessian
Hf (z) at a geodesic z. Let (M, g) be a semi-Riemannian manifold, fix
two points p and q in M and consider the infinite dimensional manifold
Ω1,2(p, q;M). The tangent space TzΩ

1,2(p, q;M) is given by (3). We can
equip the manifold Ω1,2(p, q;M) with the structure of an infinite dimensional
Riemannian manifold in the following way. Choose a Riemannian metric g0
on M and denote by ∇0 the Levi–Civita connection for the metric g0; then
a Riemannian metric h0 on Ω1,2(p, q;M), depending on g0, is defined as fol-
lows: for any z ∈ Ω1,2(p, q;M) and for any pair of tangent vector fields ζ,
ζ ′ ∈ TzΩ

1,2(p, q;M), the bilinear form h0(z) is defined by setting

h0(z)[ζ, ζ ′] =
∫ 1

0

g0(z)[∇0
sζ,∇0

sζ
′] ds .

It is well known that all the metrics h0 are equivalent, independently of
the Riemannian metric g0 on the physical manifold M, so that they induce
the same topology on the manifold Ω1,2(p, q;M). Consider now the action
integral

f(z) =
∫ 1

0

g(z)[ż, ż] ds .

It is well known that the functional f is smooth on Ω1,2(p, q;M) and, for
any z ∈ Ω1,2(p, q;M) and ζ ∈ TzΩ

1,2(p, q;M), the first variation f ′(z)[ζ] is
given by

f ′(z)[ζ] =
∫ 1

0

g(z)[ż,∇sζ] ds ,

where ∇ is the Levi–Civita connection with respect to the semi-Riemannian
metric g. A curve z ∈ Ω1,2(p, q;M) is a critical point for f if and only the first
variations f ′(z)[ζ] are zero for any admissible direction ζ ∈ TzΩ

1,2(p, q;M).
An integration by parts and a classical boot-strap argument show that a
curve z is a critical point of the action integral f on Ω1,2(p, q;M) if and only
if z is a geodesic for the metric g satisfying z(0) = p and z(1) = q.

Now, let z be a geodesic joining p and q; then the Hessian Hf (z) of the
action integral at the critical point z is given by (see for instance [51]):

Hf (z)[ζ, ζ ′] =
∫ 1

0

g(z)[∇sζ,∇sζ
′] ds−

∫ 1

0

g(z)[R(ζ, ż)ż, ζ ′] ds , (4)

for any ζ,ζ ′ ∈ TzΩ
1,2(p, q;M), where R(·, ·)· denotes the curvature tensor

for the metric g.
Let f ′′(z) : TzΩ

1,2(p, q;M)×TzΩ
1,2(p, q;M) → R be the linear operator

on TzΩ
1,2(p, q;M) (equipped with the Hilbert space structure induced by
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h0(z)) associated with the Hessian Hf (z). The operator f ′′(z) is a symmetric
Fredholm operator of index 0, because it is a compact perturbation of an iso-
morphism on TzΩ

1,2(p, q;M). But equation (4) clearly shows how the index
ν(g) influences the spectral properties of f ′′(z). Indeed, if g is a Riemannian
metric, the linear operator f ′′(z) on TzΩ

1,2(p, q) is a compact perturbation
of a positive definite bilinear form. On the other hand, if ν(g) > 0, then f ′′(z)
is still a Fredholm operator, but now it is a compact perturbation of a nonde-
generate symmetric bilinear form which is both negative definite and positive
definite on some infinite dimensional subspace of TzΩ

1,2(p, q;M). Thus the
Morse index m(z, f) of any geodesic is finite for Riemannian metrics, but it is
equal to +∞ if ν(g) > 0. Any geodesic on a semi-Riemannian manifold with
positive index is an infinite dimensional saddle point for the action integral.

The strong indefiniteness of the action integral makes it difficult to apply
to semi-Riemannian manifolds the classical results of Critical Point Theory,
based on the deformation by the gradient flow of the sublevels of a functional,
which works very well on Riemannian manifolds. Indeed, critical points hav-
ing Morse index equal to +∞ do not change the homotopy type of the sub-
levels of a functional. (We are attaching infinite dimensional handles and the
infinite dimensional unit sphere of a Hilbert space is contractible ! )

A geodesic z ∈ Ω1,2(p, q;M) is said to be nondegenerate if it is a non-
degenerate critical point of the action integral f , i.e. if the second derivative
defines an invertible linear operator on the tangent space TzΩ

1,2(p, q;M).
Since f ′′(z) is a Fredholm operator of index 0, this is equivalent to requiring
that the kernel of f ′′(z) is trivial, and this is equivalent to saying that the
Jacobi equation D2

sζ + R(ζ, ż)ż = 0 has no nontrivial solution ζ such that
ζ(0) = 0, ζ(1) = 0. Two points p and q of a semi-Riemannian manifold (M, g)
are said to be nonconjugate if any geodesic joining p and q is nondegenerate.
From a variational point of view, the nonconjugacy of the points p and q
means that the action integral (2) is a Morse function, i.e. all the critical
points of f are nondegenerate. Using the Sard theorem it can be proved that
all pairs of points in M, except for a nowhere dense set, are nonconjugate,
see [54].

We recall now the Palais–Smale compactness condition, which plays a
basic role in infinite dimensional variational problems.

Definition 2. Let f : X → R be a C1 functional defined on a Riemannian
manifold (X,h) and let F be a closed subset of X, then the functional f
satisfies the Palais–Smale (PS) condition on F if for any sequence (xm)m∈N

of points of F , such that

(i) {f (xm)}
m∈N

is bounded ,
(ii) ‖∇f(xm)‖ → 0 ,

there exists a converging subsequence. Here ‖ · ‖ denotes the norm induced on
the tangent bundle by the fixed Riemannian metric h on X.
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For any c ∈ R we set

fc = {x ∈ X | f(x) ≤ c} ,
fc = {x ∈ X | f(x) ≥ c} .

(5)

Moreover, for any a ≤ b we set

f b
a = {x ∈ X | a ≤ f(x) ≤ b} . (6)

We present now the main results of Critical Point Theory. They are all
based on two deformation theorems which show the relations between the
change of homotopy type of the sublevels of a functional and the presence of
critical points of the functional.

Theorem 1. Let f : (X,h) → R be a C1 functional defined on a complete
Riemannian manifold (X,h), let a < b be two regular values of f and as-
sume that there are no critical points in f b

a and f satisfies the Palais–Smale
condition on the closed set f b

a.
Then the sublevel fa is a strong deformation retract of f b, that is there

exists a continuous homotopy H : [0, 1] × f b → f b such that

(i) H(0, x) = x, for any x ∈ f b ;
(ii) H(t, y) = y, for any t ∈ [0, 1] and for any y ∈ fa ;
(iii) H(1, f b) = fa .

The proof of this theorem can be found in [52, 64]. The idea is to construct
the homotopy H using the flow lines of the gradient vector field ∇f of the
functional f with respect to the Riemannian structure h of the manifold X.
The absence of critical points of f on f b

a and the Palais–Smale condition on
the same set assure that the flow starting from f b reaches the sublevel fa in
a finite time, remaining fa fixed. This idea works only for C2 functionals, for
which the gradient is locally Lipschitz continuous and the Cauchy problem
for the gradient flow has a unique solution. The proof for functionals of class
C1 is obtained using the notion of pseudogradient fields introduced by R.
Palais.

The previous theorem claims that if there are no critical points in the
strip f b

a and the Palais–Smale condition holds, then f b can be continuously
deformed into fa. On the other hand, if the Palais–Smale condition holds and
the sublevels f b and fa are not homotopically equivalent, then a critical point
exists in the strip f b

a. The main abstract critical points theorems are based
on topological arguments on the underlying manifold X and/or geometric
assumptions on the function f , forcing two sublevels of the function to be
homotopically different. Moreover, some assumption on X or f is necessary
in order that f satisfies the Palais–Smale condition.

We point out that another situation can happen in this scenario: f satisfies
(PS), the sublevel fa is a deformation retract of f b and in spite of this, there
could be critical points of f in the strip f b

a. This is a situation typical of



58 A. Masiello

strongly indefinite functionals, that is functionals having critical points with
Morse index equal to +∞ as the action integral in semi-Riemannian manifolds
with positive index. So existence results based on Theorem 1 do not well apply
to semi-Riemannian geometry.

Theorem 1 can be extended, for the case that critical points of the func-
tional are present, in the following way, see [52] for the proof.

Theorem 2. Let f : (X,h) → R be a C1 functional defined on the complete
Riemannian manifold (X,h), let c ∈ R and let Kc = {x ∈ X : f(x) =
c, f ′(x) = 0} be the set of the critical points of f at the level c and assume
that f satisfies (PS).

Then, for any neighborhood U of Kc, there exists a positive number ε0
such that for any ε ∈ ] 0, ε0 [ there exists a continuous homotopy Hε : [0, 1] ×
fc+ε \ U → fc+ε \ U such that

(i) Hε(0, x) = x, for any x ∈ fc+ε \ U ;
(ii) Hε(t, y) = y, for any t ∈ [0, 1] and y ∈ fc−ε \ U ;
(iii) Hε(1, fc+ε \ U) = fc−ε .

Theorems 1 and 2 are the basic tools for reducing results on the existence
and the multiplicity of critical points of functionals bounded from below and
satisfying the Palais–Smale condition. The following theorem is a consequence
of Theorem 1.

Theorem 3. Let f : (X,h) → R be a C1 functional defined on a complete
Riemannian manifold (X,h), bounded from below and satisfying the Palais–
Smale condition on X.

Then the infimum is attained, i.e., there exists a point x0 ∈ X such that
f(x0) = infX f .

If the topology of the manifold X is rich, we have a multiplicity result of crit-
ical points of a functional in terms of a topological invariant of the manifold,
the Ljusternik–Schnirelmann category of X. For any topological space X, the
Ljusternik–Schnirelmann category cat(X) is equal to the minimal number of
closed and contractible subsets which cover X. If such a minimal number
does not exist, it is cat(X) = +∞.

Theorem 4. Let f : (X,h) → R be a C1 functional defined on a complete
Riemannian manifold (X,h), bounded from below and satisfying the Palais–
Smale condition.

Then the functional f has at least cat(X) critical points. Moreover, if
cat(X) = +∞, then there exists a sequence xn of critical points of f such
that f(xn) → +∞.

The proof of this theorem was obtained by Ljusternik and Schnirelmann at
the end of the twenties of the last century. If the manifold X is contractible,
for instance if X is a Hilbert space, Theorem 4 reduces to the existence of a
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minimum point for f . In order to obtain multiple critical points for f , some
geometrical assumption on the functional f is needed.

Finally we present the results of Morse Theory for a functional f bounded
from below and satisfying the Palais–Smale condition. Morse Theory gives
more precise estimates for the critical points of a functional defined on a
Hilbert manifold, in particular on the number of critical points having a
fixed Morse index. However, in order to prove the results of Morse Theory,
we have to pay two costs. Firstly we have to assume that the functional is
of class C2 and also all the critical points of f have to be nondegenerate, i.e.
the functional f has to be a Morse function. We first state a result which is
a refinement of Theorems 1 and 2. It gives more precise information on the
topological change of the sublevels in the presence of a nondegenerate critical
point, see [56].

Theorem 5. Let f : (X,h) → R be a C2 functional defined on a complete
Riemannian manifold (X,h), let a < b be two regular values of f and assume
that on the closed strip f b

a there is only a nondegenerate critical point x with
c = f(x) ∈ ]a, b[ .

Then the sublevel f b is homotopically equivalent to the topological space
obtained by the connected sum of the sublevel fa with a k-dimensional handle
Bk attached to fa at the boundary Sk−1, where k = m(x, f) is the Morse
index of the critical point x, Bk is the k-dimensional unit disk and Sk−1 is
its boundary, the (k − 1)-dimensional unit sphere. In particular, if k = +∞
(as in semi-Riemannian geometry ), fa is a deformation retract of f b.

The last statement comes from the fact that, unlike in finite dimension, the
infinite dimensional unit ball B∞ is contractible onto its boundary S∞, so
that the topological pair (B∞, S∞) is trivial. In particular, nondegenerate
critical points with Morse index equal to +∞, for instance the geodesics of
semi-Riemannian manifolds with positive index, do not affect the topological
properties of sublevels of the functionals and their existence cannot be de-
duced by change-of-homotopy arguments. In a certain sense, critical points
of strongly indefinite functionals are invisible to continuous homotopies.

Let (A,B) be a topological pair, that is A is a topological space and B
is a subspace of A, and let K be a field. For any k ∈ N, Hk(A,B;K) denotes
the k-th relative homology group (with coefficients in K) of the pair (A,B)
(cf. [63]). Since K is a field, the homology group Hk(A,B;K) is a vector space
and its dimension βk(A,B;K) ∈ N ∪ {+∞} is called the k-th Betti number
of (A,B) (with respect to K). The Poincaré polynomial of the pair (A,B) is
defined by setting

P(A,B;K)(r) =
∞∑

k=0

βk(A,B;K) rk .

In general P is a formal series whose coefficients are positive cardinal numbers
belonging to N ∪ {+∞}.
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We state now the Morse relations, the Morse inequalities and the total
Betti number formula for a Morse functional, bounded from below and such
that the Morse index of any critical point is finite. They relate the numbers
of critical points of the functionals to the Betti numbers of the manifold. For
the proof see [11,52].

Theorem 6. Let f : X → R be a C2 functional defined on a complete Rie-
mannian manifold (X,h). Assume that f is bounded from below and satisfies
the Palais–Smale condition on X. Moreover, assume that all critical points
of f are nondegenerate and that the Morse index m(x, f) of any critical point
x of f is finite.

Then for any field K there exists a formal series Q(r), whose coefficients
are positive cardinal numbers, such that

∑

x∈K(f)

rm(x,f) = P(X,K)(r) + (1 + r)Q(r) . (7)

Moreover, let for any k ∈ N, βk(X;K) be the k-th Betti number of the mani-
fold X with respect to the field K and denote by M(f, k) the number of critical
points x of f such that m(x, f) = k. Then

M(f, k) ≥ βk(X;K) . (8)

Finally, let K(f) be the set of the critical points of f , and denote by B(X,F)
the total Betti number of f with respect to the field K defined as

B(X,K) =
∞∑

k=0

βk(X,K) .

Then the number �K(f) of the critical points of f satisfies the relation

�K(f) = B(X,K) + 2Q(1) . (9)

Notice that, under the assumptions of the previous theorem, the number
of critical points of the functional f is countable, because nondegenerate
critical points are isolated, and the Palais–Smale condition holds on the whole
manifold X, so that sums are well defined.

The abstract critical point theorems stated above hold for functionals
bounded from below, and they well apply to the action integral in Riemannian
geometry. On the other hand, the action integral in semi-Riemannian geom-
etry is unbounded both from below and from above. The existence and the
multiplicity of critical points of unbounded functionals have been considered
in Nonlinear Analysis, trying to find variational solutions of semilinear el-
liptic or hyperbolic partial differential equations, Hamiltonian systems and
geodesics on Lorentzian geometry. The classical results on this topic are the
Mountain Pass Theorem, the Saddle Point Theorem and the socalled Linking
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Theorems which unify this class of results. We refer to [52,64] for statements
and proofs. Moreover, a generalization of the Ljusternik–Schnirelmann cat-
egory, the socalled relative category, has been introduced by some authors
in various (but essentially equivalent) ways in order to obtain multiplicity
results for strongly indefinite functionals. We refer to [23,28] for the relative
category and to [13,34] for applications to geodesics on Lorentzian manifolds.
Here we state a simplified version of the Saddle Point Theorem due to P.H.
Rabinowitz.

Theorem 7. Let (X,h) be an infinite dimensional complete Riemannian
manifold, let H be a Hilbert space, let F0 be a finite dimensional subspace
of H and let F = e0 + H0 be a finite dimensional affine submanifold of H,
with e0 ∈ H. Finally, set Ω = X × F . Let f : Ω = X × F → R be a C1

functional such that:

– the functional f satisfies the Palais–Smale condition;
– there exists a point z∗ = (x∗, t∗) ∈ Ω such that f(x∗, t) → −∞ as ‖t‖ →

+∞ and f(x, t∗) → +∞ as ‖x‖ → +∞.

Then the functional f admits a critical point which is a saddle point.

The functional f in Theorem 7 is not strongly indefinite and the found critical
point is a finite dimensional saddle point having a finite Morse index. For this
reason Theorem 7 cannot be applied directly to the action integral of a semi-
Riemannian manifold, but only modulo finite dimensional approximations.

3 Geodesics on Riemannian Manifolds

The results stated in the previous section can be applied to the action in-
tegral of a complete Riemannian manifold. We obtain existence and multi-
plicity results and a Morse Theory for geodesics on a Riemannian manifold.
These results were already the core of the results of Morse, Ljusternik and
Schnirelmann, obtained essentially using finite dimensional reductions of the
problem (see the classical book of J. Milnor [54] on Morse Theory). The in-
finite dimensional approach using Hilbert manifolds, gradient flows and the
Palais–Smale condition was introduced by R. Palais in the celebrated pa-
per [56], see also [11,48].

Let (M, g) be a complete Riemannian manifold, let p and q be two points
of M and consider the action integral f(x) =

∫ 1

0
g(x(s))[ẋ(s), ẋ(s)]ds on the

manifold Ω1,2(p, q;M). The functional f is bounded from below. Moreover,
the completeness of (M, g) allows to prove that f satisfies the (PS) condi-
tion, see [56]. By Theorem 3, there exists a minimum of f , so there exists
a minimal geodesic joining p and q. We have obtained a variational proof
of the geodesic connectedness of a complete Riemannian manifold, which is
usually proved as a consequence of the well-known Hopf–Rinow Theorem
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in Riemannian geometry. The variational methods work very well to prove
a multiplicity result. Indeed, E. Fadell and S. Husseini have proved in [22]
that the Ljusternik–Schnirelmann category cat(Ω1,2(p, q;M)) is equal to +∞
whenever the manifold M is not contractible to a point. Then, if M is non-
contractible, for any complete Riemannian metric g and for any pair of points
p and q on M, there exist infinitely many geodesics joining p and q and there
exists a sequence (xn) of such geodesics such that the action integral f(xn)
tends to +∞. This result was already proved by Serre [62] in the case of a
compact and simply connected manifold, using spectral sequences to study
the topology of Ω1,2(p, q;M).

If the Riemannian manifold is complete and the p and q are nonconjugate
(a condition which holds almost surely), the action integral satisfies all the
assumptions of the abstract Theorem 6. Indeed, f is bounded from below, it
satisfies the Palais–Smale condition, and by the nonconjugacy of p and q all
the critical points of f are nondegenerate. Finally, since a Riemannian metric
is positive definite, by (4) it follows that the Morse index of any geodesic is
finite. So the Morse relations (7), the Morse inequalities (8) and the formula
(9) for the total number of geodesics hold for the geodesics joining p and q.

The variational properties of the action integral of a complete Riemannian
manifold are completely described. Moreover, since the infinite dimensional
manifold Ω1,2(p, q;M) is homotopically equivalent to the based loop space
Ω(M), their homology groups are isomorphic, so we have a full relation
between the differential structure of the geodesics of the complete Riemannian
metric g and the topological structure of the manifold M.

Assume now that the manifold M is contractible, so the infinite dimen-
sional spaces Ω(M) and Ω1,2(p, q;M) are contractible and their category is
equal to 1. Then, for any field K, the only nonzero Betti number of Ω(M) is
β0(Ω(M);K) = 1, so the total Betti number B(M;K) of the based loop space
Ω(M) is equal to 1 . Then both Ljusternik–Schnirelmann Theory and Morse
Theory give the existence of at least one geodesic joining two points p and
q on M, the minimal one. Moreover the total number �G(p, q) of geodesics
joining p and q satisfies the relation

�G(p, q) = B(M,K) + 2Q(1) = 1 + 2Q(1) .

So we have shown that if (M, g) is complete, the manifold M is contractible
and p and q are nonconjugate, then the number of geodesics joining p and q
is infinite (when Q(1) = +∞) or it is odd (when Q(1) < +∞). An example
of a manifold with three geodesics joining two nonconjugate points is the
revolution paraboloid z = x2 + y2. Examples in which the number of geo-
desics joining two points is greater than one are interesting in the study of
the geometric causes of the so called multiple image effect, studied in Astro-
physics to describe the gravitational lens effect . In particular, Morse Theory
for Riemannian metrics gives a proof of the oddity of the number of images
in gravitational lensing in a conformally static spacetime. We refer to the
papers [36–38,40] for extensions in these direction.
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4 Geodesics on Stationary Lorentzian Manifolds

We consider now a semi-Riemannian manifold (M, g) and the action integral∫ 1

0
g(z(s))[ż(s), ż(s)]ds on the infinite dimensional manifold Ω1,2(p, q;M),

whose critical points are the geodesics joining p and q. We cannot apply the
abstract critical point theorems for functionals bounded from below because
the functional f(z) is unbounded. Moreover, the functional f does not satisfy,
in general, the Palais–Smale condition and the Morse index of any geodesic
is equal to +∞.

However there is a class of Lorentzian manifolds where the methods of
Riemannian manifolds work. This is the class of stationary Lorentzian mani-
folds. We recall some definitions. Let (M, g) be a semi-Riemannian manifold.
A C1 vector field Y (z) on M is called a Killing vector field for g if the Lie
derivative of the metric g with respect to Y vanishes, or equivalently, if for
any pair of vector fields W1 and W2 on M, it is

g(z)[∇W1Y,W2] + g(z)[∇W2Y,W1] = 0 ,

where ∇ denotes the Levi–Civita connection for the metric g. This definition
is equivalent to claiming the strong property that all stages of the flow of
Y are isometries for (M, g), see [55, 68] for details. The main property of a
Killing field with respect to geodesics is the following: Let Y and z(s) be
respectively a Killing field and a geodesic for (M, g), then a conservation law
holds for z(s), because

d
ds
g(z(s))[ż(s), Y (z(s))] = 0 . (10)

Definition 3. A Lorentzian manifold is called stationary if it admits
a smooth vector field Y (z) which is both Killing and timelike, that is
g(z)[Y (z), Y (z)] < 0, for any z ∈ M. A stationary Lorentzian manifold
is called static if the orthogonal distribution Y ⊥ to the timelike Killing field
Y is integrable (cf. [55]).

A wide class of stationary and static Lorentzian manifolds are the standard
ones. A Lorentzian manifold (M, g) is standard stationary if the manifold M
is diffeomorphic to a product manifold M0 × R and, setting z = (x, t) ∈ M
with x ∈ M0 and t ∈ R, the metric g in the coordinates (x, t) takes the
following form: for any z = (x, t) ∈ M and for any ζ = (ξ, τ) ∈ TzM =
TxM0 × R,

g(z)[ζ, ζ] = 〈ξ, ξ〉 + 2〈δ(x), ξ〉τ − β (x) τ2 , (11)

where 〈·, ·〉 is a Riemannian metric on M0, δ(x) is a smooth vector field on
M0 and β (x) is a smooth positive scalar field on M. Moreover, (M, g) is a
standard static Lorentzian manifold if and only if the vector field δ(x) in (11)
is zero. Notice that ∂t is a timelike Killing vector field with respect to g.
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Many physically relevant spacetimes in Relativity are stationary or static.
The Minkowski spacetime of Special Relativity, the Schwarzschild spacetime
outside the event horizon and the Reissner–Nordström spacetime outside the
first event horizon are examples of standard static spacetimes, while the Kerr
spacetime outside the stationary limit surface is an example of standard sta-
tionary spacetime, see [46]. On the other hand, there are also interesting
examples of nonstandard stationary metrics. The Gödel spacetime is station-
ary but nonstandard, because it cannot be written in the form of (11) with
a positive definite metric 〈·, ·〉. Moreover, there exists a stationary metric on
the 3-sphere S3 and static metrics on manifolds topologically equivalent to a
torus.

We fix now a stationary Lorentzian manifold (M, g) with a timelike
smooth Killing vector field Y (z) and we fix two points p and q on M. The ac-
tion integral

∫ 1

0
g(z(s))[ż(s), ż(s)]ds is unbounded on the infinite dimensional

manifold Ω1,2(p, q;M). However, a new variational principle for geodesics
joining p and q can be proved. Indeed, the property of Y (z) to be a Killing
vector field gives the existence of a natural constraint for the functional f :
there is a submanifold N (p, q) ofΩ1,2(p, q;M) such that the restriction of f to
N (p, q) has the same critical points as the free functional f on Ω1,2(p, q;M),
that is the geodesics joining p and q. In other words, the Killing property of
Y (z) allows to kill (!) the time directions on Ω1,2(p, q;M) which are respon-
sible for the strongly indefinite nature of the action integral on a Lorentzian
manifold. The manifold N (p, q) is defined as follows:

Definition 4. Let (M, g, Y ) be a stationary spacetime, p and q two points on
M. The natural constraint of the action integral on Ω1,2(p, q;M) is defined
as

N (p, q) = {z ∈ Ω1,2(p, q;M) :

g(z)[ż, Y (z)] is constant almost everywhere on [0, 1]} .

Notice that by (10) any geodesic joining p and q belongs to the natural
constraint N (p, q). Moreover, again the Killing property of Y (z) allows to
prove the following variational principle.

Theorem 8. Let (M, g, Y ) be a stationary spacetime, p and q two points on
M and assume that the natural constraint N (p, q) is not equal to the empty
set. Then the set N (p, q) is an infinite dimensional smooth submanifold of
Ω1,2(p, q;M). Let J(z) be the restriction of the action integral to N (p, q), then
a curve z ∈ N (p, q) is a critical point of J if and only if z is a geodesic joining
p and q, that is z is a critical point of the free functional f on Ω1,2(p, q;M).

This variational principle was proved for an arbitrary stationary Lorentzian
manifold in [43]. It was first proved in [5] and [32] respectively for standard
static and standard stationary Lorentzian manifolds. In the standard case
N (p, q) is smooth since it is diffeomorphic to the infinite dimensional manifold
Ω1,2(p0, q0;M0), where p0 and q0 are projections of p and q to M0, see also
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(11). We point out that sometimes the natural constraint N (p, q) is equal
to the empty set, see [43] for an example. In the standard case, N (p, q) is
not empty if M is connected. The variational principle stated above does not
hold if Y is only a timelike vector field; it strongly relies on the Killing nature
of Y .

We state now the main theorem on the geodesic connectedness of a sta-
tionary Lorentzian manifold. We first give a definition, see [43].

Definition 5. Let p and q be two points of M and c ∈ R. We say that
the action integral f is c-precompact on N (p, q) if any sequence (zn)n∈N of
curves in N (p, q) such that

f(zn) ≤ c , ∀n ∈ N

contains a subsequence which converges uniformly to a curve z in N (p, q).
We say that f is precompact on N (p, q) if it is c-precompact on N (p, q) for
any real number c.

The definition of c-precompactness is a generalization of the notion of com-
pleteness of a Riemannian manifold, even if it requires a property of the func-
tional f on an infinite dimensional manifold, rather than a property of the
physical manifold (M, g). The c-precompactness is satisfied by the action in-
tegral on the manifold of curves joining two points in a complete Riemannian
manifold. We state now the main theorem on the geodesic connectedness of
a stationary Lorentzian manifold, see [43].

Theorem 9. Let (M, g, Y ) be a stationary Lorentzian manifold and let p and
q two points of M. Assume that N (p, q) is nonempty and the action integral
f(z) is precompact on N (p, q). Let J(z) be the functional obtained by the
restriction of f(z) to N (p, q).

Then the functional J is bounded from below and satisfies the Palais–
Smale condition. So J has a minimum which is a geodesic joining p and q.
If the assumptions above hold for any p and q, then (M, g, Y ) is geodesically
connected.

Moreover, if f is precompact on N (p, q), the Killing field is complete and
the manifold M is not contractible to a point, then infinitely many geodes-
ics joining p and q exist and a sequence (zn)n∈N of such geodesics satisfies
f(zn) → +∞ as n → ∞.

This theorem is very general in its statement. In the case of standard station-
ary manifolds, suitable assumptions on the components 〈·, ·〉, δ(x) and β(x)
allow to obtain the geodesic connectedness and the existence of infinitely
many geodesics, see [5, 32].

Theorem 10. Assume that the stationary Lorentzian manifold (M, g) is of
standard type and assume that the Riemannian metric 〈·, ·〉 on M0 is com-
plete, the vector field δ(x) satisfies
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sup{〈δ(x), δ(x)〉, x ∈ M0} < +∞

and the scalar field β(x) satisfies

0 < L ≤ β(x) ≤ M < +∞

for some positive constants L, M and for any x ∈ M0. Then for any pair
of points p and q of M, the functional f is precompact on N (p, q) and the
standard manifold (M, g) is geodesically connected. Moreover, if the manifold
M is noncontractible, then infinitely many geodesics joining p and q exist and
a sequence (zn)n∈N of such geodesics satisfies f(zn) → +∞. Finally, if the
metric is standard static, all the results above hold assuming for the scalar
field β(x) only that it is bounded from above.

The assumptions on δ and β can be weakened, assuming that δ has sublinear
growth and β has subquadratic growth at infinity. Moreover, the geodesic
connectedness can be proved also in the standard static case when the scalar
field has quadratic growth at infinity, see for instance [26]. For superquadratic
growths there are counter-examples to the geodesic connectedness as the anti-
de Sitter spacetime, see [57].

For nonstandard static manifolds, the following result is proved in [17].

Theorem 11. Any compact static Lorentzian manifold (M, g, Y ) is geodesi-
cally connected. Moreover, in any homotopy class of curves joining two points
of the manifold, there is a geodesic minimizing the action integral on the in-
tersection of the homotopy class with the natural constraint.

As Miguel Sánchez has pointed out, the geodesic connectedness can be real-
ized for any pair of points by a timelike geodesic; that is, a compact static
manifold is totally vicious.

The assumption on the static manifold can be weakened. The geodesic
connectedness of a static Lorentzian manifold holds also if the manifold M
is not necessarily compact, but the function β(z) = −g(z)[Y (z), Y (z)] has at
most quadratic growth at infinity, and the following Riemannian metric gR

on M associated with g and Y is complete:

gR(z)[v, w] = g(z)[v, w] + 2
g(z)[Y (z), v]g(z)[Y (z), w]

β(z)
.

It is not known if the results stated above for static metrics hold for stationary
manifold. For instance, the geodesic connectedness of a compact stationary
manifold is an open problem. A generalization to semi-Riemannian man-
ifolds of index k admitting k timelike, linearly independent Killing vector
fields satisfying some other technical assumptions, is contained in [44]. In
the paper [14] it is studied the geodesic connectedness of the spacetimes of
Gödel type. It is a class of stationary spacetimes, including the well-known
solution of the Einstein equation obtained by Kurt Gödel, that contain closed
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timelike curves. In particular it is shown in [44] that the Gödel spacetime is
geodesically connected. Finally in the paper [3] the geodesic connectedness
of standard static spacetimes is studied under some geometric assumptions.

We consider now Morse Theory for geodesics on stationary spacetimes.
The reduction to the natural constraint permits to develop a Morse Theory
for the geodesics joining two nonconjugate points on a stationary Lorentzian
manifold. We first state the following result which shows that the restriction
of the action integral to the natural constraint is not strongly indefinite.

Theorem 12. Let (M, g, Y ) be a stationary spacetime and let z : [0, 1] →
M be a geodesic for M, with z(0) = p and z(1) = q. Let N (p, q) be the
natural constraint for the action integral f on Ω1,2(p, q;M) and let J be the
restriction of f to N (p, q). Finally consider the continuous linear operator
J ′′(z) : TzN (p, q) → TzN (p, q) induced on TzN (p, q) by the Hessian HJ (z)
of the critical point z of J .

Then J ′′(z) is a Fredholm operator of index 0 and it is a compact perturba-
tion of a positive definite isomorphism on TzN (p, q). In particular the Morse
index m(z, J) and the augmented Morse index m∗(z, J) are finite. Moreover,
z is a nondegenerate critical point of J if and only if q is nonconjugate to p
along z. In this case it is m(z, J) = m∗(z, J).

Collecting all the results above, we can prove the Morse relations for the geo-
desics joining two nonconjugate points on a stationary Lorentzian manifold.
We recall that, on a semi-Riemannian manifold, the set of pairs of nonconju-
gate points has measure equal to 0, so the next theorem holds for almost all
pairs of points, see [42] for the proof in the general case of stationary metrics,
while for a simpler one in the standard cases see [9, 35].

Theorem 13. Let (M, g, Y ) be a stationary spacetime and let p and q be two
points of the manifold. Let N (p, q) be the natural constraint for the action
integral on Ω1,2(p, q;M) and let J be the restriction of f to N (p, q). Then the
functional J is a Morse functional if and only if p and q are nonconjugate.

Assume now that p and q are nonconjugate. Moreover, assume that the
timelike Killing field Y is complete and f is precompact on N (p, q). Then, for
any field K there exists a formal series Q(r), whose coefficients are positive
cardinals, such that, denoting by G(p, q) the set of the geodesics joining p and
q, we have

∑

z∈G(p,q)

rm(z,J) = P(Ω(M),K) + (1 + r)Q(r) ,

where Ω(M) is the based loop space of the manifold M. Moreover the Morse
inequalities (8) and the total Betti number formula (9) hold.
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5 Geodesics on Splitting Lorentzian Manifolds

In this section we present some results on the geodesics joining two points
for the class of orthogonally splitting Lorentzian manifolds.

Definition 6. A Lorentzian manifold (M, g) is said to be orthogonally split-
ting if M = M0 × R, where M0 is a smooth connected manifold, and
the metric g has the following form. For any z = (x, t) ∈ M and for any
ζ = (ξ, τ) ∈ TzM = TxM0 × R,

g(z)[ζ, ζ] = 〈α(x, t)ξ, ξ〉 − β (z) τ2 , (12)

where 〈·, ·〉 is a Riemannian metric on M0, α(x, t) is a positive linear operator
on TxM0, smoothly depending on z, and β (z) is a smooth positive scalar field
on M.

The notion of orthogonally splitting manifolds can be introduced in a more
intrinsic way. A Lorentzian manifold (M, g) is orthogonally splitting if it is
stably causal (see [46]) and has a smooth time function T : M → R such that
the smooth timelike vector field ∇T is complete. Moreover, we have to assume
that all the level hypersurfaces T−1(c) are diffeomorphic, so that the manifold
M is foliated into a cross product M = M0 × R, where M0 = T−1(0).

Many physically relevant classes of spacetimes are orthogonally splitting,
as the Robertson–Walker and the generalized Robertson–Walker spacetimes,
see [24,55]. A classical result of Geroch [31] states that any globally hyperbolic
Lorentzian manifold is homeomorphic to an orthogonally splitting one. Very
recently it has been shown by Bernal and Sánchez [10] that the homeomor-
phism can be replaced by a diffeomorphism.

We fix now an orthogonally splitting Lorentzian manifold (M, g) and two
points p = (x0, t0) and q = (x1, t1) on M; our aim is to study the geodesics
for g joining p and q. The action integral is expressed now by

f(z) =
∫ 1

0

g(z)[ż, ż] ds =
∫ 1

0

〈α(x, t)ẋ, ẋ〉 ds−
∫ 1

0

β(z)ṫ2 ds , (13)

defined on the manifold Ω1,2(p, q;M) ≡ Ω1,2(x0, x1;M0) ×Ω1,2(t0, t1;R).
The action functional f is unbounded both from below and from above as

it clearly appears from (13). On the other hand, under simple assumptions
on the coefficients α(z) and β(z) (for instance, if they are bounded below
away from 0 and bounded above away from +∞), the functional f has the
saddle point geometry. Unfortunately Theorem 7 cannot be directly applied
to f for two reasons: first of all, the action functional f does not satisfy
the Palais–Smale condition. Moreover, the saddle geometry of f is not finite
dimensional as in Theorem 7, because the manifold Ω1,2(t0, t1;R) is infinite
dimensional. Indeed f is a strongly indefinite functional. In spite of this the
following theorem has been proved in [7].
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Theorem 14. Let us assume that the orthogonally splitting Lorentzian man-
ifold (M, g) satisfies the following properties:

A1) The Riemannian manifold (M0, 〈·, ·〉) is complete;
A2) there exists λ > 0 such that, for any z = (x, t) ∈ M, and for any

ξ ∈ TxM0,
〈α(z)ξ, ξ〉 ≥ λ〈ξ, ξ〉 ;

A3) there exists two positive constants 0 < ν ≤ M such that, for any z ∈ M,

ν ≤ β (z) ≤ M ;

A4) there exists L > 0 such that, for any z ∈ M,

|〈αt(z)ξ, ξ〉| ≤ L 〈ξ, ξ〉 , |βt (z) | ≤ L ,

where αt and βt denote respectively the partial derivative, with respect to
t, of α and β;

A5)
limsupt→+∞〈αt(x, t)ξ, ξ〉 ≤ 0 ,

liminft→−∞〈αt(x, t)ξ, ξ〉 ≥ 0 ,

uniformly in x ∈ M0 and ξ ∈ TxM0, 〈ξ, ξ〉 = 1.

Then the Lorentzian manifold (M, g) is geodesically connected.

The proof of Theorem 14 is of a variational nature. The Rabinowitz Saddle
Point Theorem is applied to a family of functionals which approximate the
action integral f , satisfy the Palais–Smale condition and have the geometry
of a finite dimensional saddle point. A priori estimates on the critical points
of these functionals allow to pass to the limit and to find a critical point of f .
Assumptions A1)–A4) are needed to prove the Palais–Smale condition, while
assumption A5) is essential to prove the a priori estimates and in the limit
process of the critical points of the approximating functionals. The assump-
tions A1)–A5) have been weakened in the paper [50], where assumption A5)
is replaced by the existence of a family of covering subsets of M which are
invariant by the gradient flow of the time function T and whose boundaries
satisfy a convexity assumption. In a certain sense assumption A5) can be
interpreted as a convexity at infinity of the metric g.

The results proved above for orthogonally splitting Lorentzian manifolds
can be easily extended to orthogonally splitting semi-Riemannian manifolds
of index k. In this case the manifold is a product M0 × Rk and the metric
is positive definite on the tangent bundle of M0 and negative definite on
the tangent bundle of Rk. Some results on the geodesic connectedness on
generalized Robertson–Walker spacetimes, not using variational methods but
integrating the geodesic equations, have been obtained in [24].
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If the topology of the manifold M is nontrivial, we have the following
multiplicity result, see [13, 34] based on abstract multiple critical point the-
orems for unbounded functionals obtained using the relative category and a
theorem of Fadell and Husseini [23] on the relative category of the based loop
space of a noncontractible manifold.

Theorem 15. Let (M, g) be an orthogonally splitting Lorentzian manifold
satisfying A1)–A5) and assume that the manifold M is not contractible to a
point.

Then, for any pair of points p = (x0, t0) and q = (x1, t1) ∈ M = M0×R,
there exist infinitely many geodesics joining them. Moreover there exists a
sequence (zm) of such geodesics such that f(zm) → +∞.

The development of a Morse Theory for geodesics on a splitting Lorentzian
manifold is a delicate problem. In the case of stationary metrics, Morse The-
ory was obtained owing to the introduction of the natural constraint where
the action integral is not strongly indefinite and the Morse index of any geo-
desic is finite. But now we have no natural constraints. In a certain sense the
geodesic problem in a nonstationary spacetime is genuinely strongly indefi-
nite.

Morse Theory for strongly indefinite functionals has been the object of
several studies in the last years and many applications to Hamiltonian sys-
tems, wave maps and symplectic geometry have been obtained. In particular,
the definition of a new index for a critical point of a functional such that the
second differential at the critical point is a Fredholm operator of index 0 has
been studied by many authors [1, 2, 19,20].

We define here a relative index and an augmented relative index for a class
of bilinear forms on a Hilbert space. Let H be a real Hilbert space and let
a : H ×H −→ R be a continuous, symmetric, bilinear form on H such that
a = a0 +k, where a0 is a continuous, symmetric, nondegenerate bilinear form
on H and k is a bilinear compact form. Let A and A0 and K be the linear
operators on H induced by the forms a, a0 and k. Notice that A = A0 +K,
the operator A0 is an isomorphism and K is a compact operator, so the
operator A is a Fredholm operator of index 0. We denote by ker(a) the kernel
of the bilinear form a which is equal to the kernel of the operator associated
with A. Notice that ker(a) is a finite dimensional subspace of H. Moreover we
denote by V +(A) and V −(A) the maximal A-invariant subspaces on which
A is respectively positive definite and negative definite. Analogously, the A0-
invariant subspaces V +(A0) and V −(A0) on which A0 is positive definite and
negative definite are defined. The index j(a, a0) of the bilinear form a relative
to a0 is defined by setting:

j(a, a0) = dim(V−(A) ∩ V+(A0)) − dim(V+(A) ∩ (V−(A0))) . (14)

Moreover, the augmented index j∗(a, a0) of a with respect to a0 is

j∗(a, a0) = j(a, a0) + dim
(
ker(a)

)
. (15)
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The indices j(a, a0) and j∗(a, a0) are relative integers. They coincide if and
only if also the bilinear form a is nondegenerate. Moreover, if a0 is a positive
definite bilinear form, the relative index j(a, a0) is equal to the Morse index
of a, the maximal dimension of a subspace where a is negative definite.

The relative index introduced is well defined for geodesics on a semi-
Riemannian manifold. Let (M, g) be a semi-Riemannian manifold and let
z(s) : [0, 1] → R be a geodesic for g with z(0) = p and z(1) = q, so z

is a critical point of the action integral f(z) =
∫ 1

0
g(z(s))[ż(s), ż(s)]ds on

the manifold Ω1,2(p, q;M). The Hessian of f at z is the bilinear form on
TzΩ

1,2(p, q;M) given by

Hf (z)[ζ, ζ ′] =
∫ 1

0

g(z)[∇sζ,∇sζ
′]ds−

∫ 1

0

g(z)[R(ζ, ż)ż, ζ ′] ds . (16)

Now the linear operator f ′′(z) associated with Hf (z) is a Fredholm opera-
tor of index 0 on the tangent space TzΩ

1,2(p, q;M). Indeed, we have that
Hf (z) = a0(z) + k(z), where

a0(z) =
∫ 1

0

g(z)[∇sζ,∇sζ
′] ds

is nondegenerate and

k(z) = −
∫ 1

0

g(z)[R(ζ, ż)ż, ζ ′] ds

defines a compact linear operator on TzΩ
1,2(p, q;M). This last fact is essen-

tially a consequence of the compact embedding of the Sobolev space of func-
tions defined on an interval into the space of continuous functions equipped
with uniform convergence topology, or equivalently, it is a consequence of the
classical Ascoli–Arzelà Theorem in Functional Analysis. So we can define the
relative index and the augmented relative index for a geodesic.

Definition 7. Let (M, g) be a semi-Riemannian manifold and let z : [0, 1] →
M be a geodesic joining p = z(0) and q = z(1). The relative index j(z) of
the geodesic z is defined by setting

j(z) = j(Hf (z), a0(z)) , (17)

while the augmented relative index j∗(z) is defined by setting

j∗(z) = j(z) + dim
(
kerH ′′

f (z)
)
.

Notice that j(z) = j∗(z) if and only if p and q are nonconjugate along z.
The index of a semi-Riemannian geodesic z is a relative integer j(z) ∈ Z,
so it could be negative. If the metric g is Riemannian, then the bilinear
form a0(z) is positive definite and so the relative index j(z) reduces to the
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classical Morse index m(z, f) of the geodesic. If the metric is Lorentzian, the
spectral properties of f ′′(z) are only partially known. If z is a causal geodesic,
then j(z) ∈ N, see [4, 8]. It would be interesting to classify the (spacelike)
geodesics with negative index. It is very interesting to note that if (M, g, Y )
is a stationary spacetime, then the index j(z) of any geodesic for (M, g, Y )
is nonnegative and j(z) = m(z, J), where J is the restriction of the action
integral to the natural constraint.

Actually there are no results on Morse relations for geodesics in nonsta-
tionary Lorentzian manifolds, but only on the Morse inequalities for geodesics
joining two nonconjugate points in an orthogonally splitting one, see [2].

Theorem 16. Let (M, g) be an orthogonally splitting Lorentzian manifold
satisfying assumptions A1)–A5) and let p and q be two nonconjugate points
of M. Moreover, for any k ∈ N, denote by G(p, q; k) the set of geodesics z
for the metric g, joining p and q and such that the relative index j(z) of z is
equal to k. Then, for any k ∈ N and for any field K we have

�G(p, q; k) ≥ βk(Ω(M);K)) , (18)

where βk(Ω(M);K) is the k-th Betti number of the based loop space Ω(M;K)
with respect to the field K.

Notice that under the assumptions of the previous theorem, whenever the
manifold M is noncontractible to a point, there exist infinitely many geodes-
ics joining the points p and q. The topological properties of the based loop
space Ω(M) (cf. [22]) allows to estimate the relative index on a sequence
of such geodesics. Indeed, it follows that a sequence of geodesics (zm)m∈N

joining p and q exists such that j(zm) → +∞ as m → +∞, see [2].
The proof of the Morse inequalities is based on a detailed analysis of

the Morse theoretical properties of the family of functionals approximating
the functional f introduced in [7], satisfying the Palais–Smale condition and
having a finite dimensional saddle geometry. We refer to [2] for other details.

The Morse inequalities allow to estimate the number of geodesics having
nonnegative index in terms of the singular homology groups of the based loop
space. If one wants to give some estimates on the number of geodesics with
negative index, classical homological or cohomological theories (as singular
homology or singular cohomology) do not work. From the variational point
of view, the classical theories are not affected by attaching an infinite dimen-
sional cell, because the infinite dimensional unit sphere is contractible. The
study of homology or cohomology theories for strongly indefinite function-
als is an active field of interaction between Algebraic Topology and Critical
Point Theory (see [1, 65] for some recent result). However, Morse relations
for geodesics joining two nonconjugate points in a nonstationary Lorentzian
manifold is a completely open problem.
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6 Results on Manifolds with Boundary

Many physically relevant spacetimes exhibit a content of noncompleteness
due to the presence of a boundary, a horizon or a singularity. We present
now some results on the geodesic connectedness of some of these spacetimes
admitting a horizon or a boundary. The proof of these results is essentially
based on the following notion of convexity.

Definition 8. Let (M, g) be a semi-Riemannian manifold and let N be an
open subset of M with topological boundary ∂N ; we say that the open set
N has a convex boundary ∂N if the following property holds: If a curve
z : [0, 1] → M is a geodesic for the metric g such that z([0, 1]) ⊂ N ∪∂N and
z(0), z(1) ∈ N , then z([0, 1]) ⊂ N .

The notion of an open set with convex boundary is different from the notion
of a convex neighborhood introduced in many texts on differential geome-
try, being a global notion rather than a local one. If the boundary ∂N is a
smooth submanifold of M, the convexity can be determined by studying the
restriction to the tangent bundle of ∂N of the Hessian of a smooth function
representing a sort of distance from ∂N , see [51].

Proposition 1. Let N be an open subset of a semi-Riemannian manifold
(M, g) with a smooth boundary ∂N and let Φ : M → R be a smooth function
such that Φ−1(0) = ∂N , Φ−1(]0,+∞[) = N and ∇Φ(z) �= 0, for any z ∈ ∂N .

Then the open subset N has a convex boundary if and only if for any
z ∈ ∂N and for any v ∈ Tz∂N , it is HΦ(z)[v, v] ≤ 0, where HΦ(z) denotes
the Hessian operator of Φ at the point z with respect to the metric g.

If the boundary ∂N of the open subset N is nonsmooth (as it happens in
many physically interesting spacetimes), the characterization of the convexity
of ∂N is more delicate and requires careful estimates of HΦ in a neighborhood
of ∂N in N .

Many global results have been obtained, using variational or topologi-
cal methods, on geodesics joining two points in stationary or orthogonally
splitting Lorentzian manifolds with boundary. We present here only the ap-
plications to physical spacetimes of General Relativity.

– Schwarzschild spacetime. Any pair of points outside the event horizon is
joined by infinitely many distinct geodesics with images contained in the
same region. Moreover the Morse relations and the Morse inequalities hold
for any pair of nonconjugate points outside the event horizon, see [6, 35].
These results have been obtained by viewing the Schwarzschild spacetime
outside the event horizon as an open subset, with nonsmooth boundary, of
the Kruskal spacetime.

– Reissner–Nordström spacetime. The results stated for the Schwarzschild
spacetime hold also for the static external region of the Reissner–Nord-
ström spacetime with two event horizons. Moreover the existence of in-
finitely many geodesics joining two arbitrary points in the intermediate
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region between the event horizons has been proved in [33]. If the points are
nonconjugate, only the Morse inequalities actually hold. Notice that the
Reissner–Nordström spacetime between the event horizons is orthogonally
splitting but nonstatic.

– Kerr spacetime. The Kerr spacetime outside the stationary limit surface is
geodesically connected, see [25].

The proof of the geodesic connectedness for the Kerr spacetime is based on a
topological argument involving the topological degree defined for a suitable
map. The proofs of the other results are variational in nature, using a pertur-
bation argument for the action integral over the curves having support very
close to the boundary of the open set considered. A priori estimates and a
limit process for the critical points of these approximating functionals allow
to prove the existence of a critical point of the action integral. For a different
approach, using techniques of nonsmooth analysis, see [21].

7 Other Directions

In this paper we have presented some global properties of Lorentzian mani-
folds obtained by using variational methods. We have focused our attention
on the geodesic connectedness of Lorentzian manifolds. Moreover, multiplicity
results and Morse theoretical properties of such geodesics have been stated.
These results have been obtained by exploiting the variational properties of
the action integral on a Lorentzian manifold. In Lorentzian geometry, the
action integral is strongly indefinite and its stationary points are infinite di-
mensional saddle points. Stationary points of the action integral cannot be
found by minimization and more involved arguments based on critical point
theorems for unbounded functionals are needed to solve the problem. On the
other hand, many meaningful counter-examples to the geodesic connected-
ness are known in Lorentzian geometry.

Other interesting variational problems, such as the existence of closed
geodesics of any causal character, or more generally, the existence of spatially
closed geodesics, have not been considered. For results in these directions, see
for instance [17,29,30,45,49,66] and the references therein.

The Morse Index Theorem in Riemannian geometry states that the Morse
index of a Riemannian geodesic z, that is the number of negative eigenvalues
of the Hessian operator f ′′(z), is equal to the number of conjugate points
along the geodesic, counted with their multiplicity. The statement of this
beautiful result cannot be immediately extended to geodesics on Lorentzian
manifolds, because the Morse Index of a Lorentzian geodesic is equal to +∞.
The Morse Index Theorem was extended by Karen Uhlenbeck to timelike
geodesics [4, 67], and by John Beem and Paul Ehrlich to lightlike ones [4].
The number of conjugate points along a timelike geodesic z is finite and it is
equal to the number of negative eigenvalues of the restriction of the Hessian
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operator f ′′(z) to the subspace ż⊥ of the tangent space TzΩ
1,2(p, q;M) con-

sisting of vector fields along z pointwise orthogonal to the tangent field ż. It
is not difficult to show that the index of the restriction of f ′′(z) to ż⊥ is finite.
In a certain sense, we have again deleted the time direction which is respon-
sible for the indefiniteness of the geodesic problem in a Lorentzian manifold.
The proof of the Morse Index Theorem for lightlike geodesics is delicate and
involves more subtle reductions on the tangent space TzΩ

1,2(p, q;M) than
in the timelike case. The Morse Index Theorem for lightlike geodesics can
be proved also in the context of relativistic optics and extensions to Gen-
eral Relativity of the Fermat principle, viewing light rays as critical points
of an arrival time functional, see [37, 41, 58] for a proof. The Morse Index
Theorem for spacelike geodesics has a totally different nature. First of all, it
has been observed by Adam Helfer [47] that there exist a Lorentzian mani-
fold and a spacelike geodesic admitting a continuum of conjugate points, see
also [53, 61]. However, introducing a suitable nondegeneration assumption,
it can be defined a spectral index for a spacelike geodesic which is equal
to a relative integer, and it is equal to a geometric index for the geodesic,
called the Maslov index, which is not given by simply counting conjugate
points with their multiplicity but requires more complicated evaluations for
a conjugate point, see [42,53]. In general the Maslov index of a geodesic is a
relative integer, too. For any spacelike geodesic z on a stationary Lorentzian
manifold, the nondegeneration assumption holds and the spectral index is
equal to the Morse index m(z, J) of z as a critical point of the restriction J
of the action integral to the natural constraint. The Morse Index Theorem
claims that the spectral index m(z, J) equals the Maslov index of z, so for
spacelike geodesics on stationary Lorentzian manifolds, the Maslov index is a
nonnegative number. For extensions to spacelike geodesics on nonstationary
Lorentzian manifolds see [60].

Recently, some results have been obtained on the existence and multiplic-
ity of solutions of the relativistic Lorentz force equation, and in particular
for timelike solutions. The relativistic Lorentz force equation describes the
motion of a charged massive test particle under the action of a gravitational
field and an external electromagnetic field, see [68]. For results on existence
and multiplicity of timelike solutions see [15, 16]. Also for the Lorentz force
equation there are some open problems. In particular, we mention one of the
most interesting problems about timelike solutions: it is still not clear if there
are only finitely many conjugate points in a compact interval of a timelike
solution of the relativistic Lorentz force equation, as for timelike geodesics,
see also [18].

Finally, we mention that the problem of the geodesic connectedness of
semi-Riemannian manifolds is still essentially open, except for generalizations
of the results presented in Sects. 4 and 5 on stationary and orthogonally
splitting Lorentzian manifolds.
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Abstract. Global geometric properties of product manifolds M = M × R
2, en-

dowed with a metric type 〈·, ·〉 = 〈·, ·〉R + 2dudv + H(x, u)du2 (where 〈·, ·〉R is a
Riemannian metric on M and H : M×R → R a function), which generalize classical
plane waves, are revisited. Our study covers causality (causal ladder, non-existence
of horizons), geodesic completeness, geodesic connectedness and existence of conju-
gate points. Appropriate mathematical tools for each problem are emphasized and
the necessity to improve several Riemannian (positive definite) results is claimed.

The behaviour of H(x, u) for large spatial component x becomes essential, with
a spatial quadratic behaviour being critical for many geometrical properties. In
particular, when M is complete, if −H(x, u) is spatially subquadratic, the space-
time becomes globally hyperbolic and geodesically connected. But if a quadratic
behaviour is allowed (as happens in plane waves), then both global hyperbolicity
and geodesic connectedness may be lost.

From the viewpoint of classical general relativity, the properties which remain
true under generic hypotheses on M (as subquadraticity for H) become meaningful.
Natural assumptions on the wave – finiteness or asymptotic flatness of the front –
imply the spatial subquadratic behaviour of |H(x, u)| and, thus, strong results for
the geometry of the wave. These results do not always hold for plane waves, which
appear as an idealized non-generic limit case.

1 Introduction

Among the reasons which contribute to the recent interest in pp-wave type
spacetimes, we mention, on the one hand, classical geometrical properties
and, on the other, applications to string theory1. About the former, pp-waves

1Of course, there is also another very influential reason: the possibility of direct
detection of gravitational waves. Hulse and Taylor were awarded the Nobel prize in
1993 for the discovery, in the 1970s, of indirect evidence of their existence – a binary
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692, 79–98 (2006)
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spacetimes, and especially plane waves, [12,23,35] have curious and intriguing
properties, which led to questions still open or only recently solved. The well-
known Penrose limit [39] (see also [9, 10]) associates to every spacetime and
every choice of an (unparametrized) lightlike geodesic a plane-wave metric.
Penrose [37] also emphasized that, in spite of being geodesically complete,
plane waves are not globally hyperbolic (see Sect. 2 for definitions). Ehlers and
Kundt [19] conjectured that gravitational plane waves are the only complete
gravitational pp-waves. As we will see, by now the lack of global hyperbolicity
is well understood, but the Ehlers-Kundt conjecture still remains open. Ap-
plications to string theory have highlights such as: (a) gravitational pp-waves
are relevant spacetimes with vanishing scalar invariants (VSI, see [17,40] for a
classification), and such spacetimes yield exact backgrounds for string theory
(vanishing of α′ corrections, see [2,28]), (b) Berenstein, Maldacena and Nas-
tase [5] have recently proposed an influential solvable model for string theory
by taking the Penrose limit in AdS5 × S5 spacetimes, or (c) after realizing
that Gödel–like universes can be supersymmetrically embedded into string
theory, it was realized and emphasized that these solutions were T -dual to
compactified plane-wave backgrounds [11,26,33].

The necessity to better understand the geometry of waves and their po-
tential applications to string theory justifies to study pp-waves from a wider
perspective, where new mathematical tools appear naturally. The authors, in
collaboration with A.M. Candela [15], considered the following class of space-
times (M, 〈·, ·〉), called plane-fronted waves (PFW) or Mp-waves, see Sect. 2,
which essentially include the classical pp-waves and, thus, plane waves:

M = M × R
2

〈·, ·〉 = 〈·, ·〉R + 2 du dv +H(x, u) du2 .
(1)

Here (M, 〈·, ·〉R) is any smooth Riemannian (C∞, positive-definite, con-
nected) n-manifold, the variables (v, u) are the natural coordinates of R

2

and the smooth scalar field H : M × R → R is not identically 0.
Our initial motivation to study such metrics came from some work by

two contributors to this meeting, R. Penrose and P.E. Ehrlich. Penrose [37]
showed that, even though plane waves are strongly causal, they are not glob-
ally hyperbolic. Moreover, they present a property of focusing lightlike geo-
desics which forbids not only global hyperbolicity but also the possibility
to embed them isometrically in higher-dimensional semi-Euclidean spaces

system loses an exact amount of rotational energy which can be interpreted only as
originating from the radiation of gravitational waves. Nowadays, experimentalists
look for direct evidence, and a generation of large scale interferometers is close to be
operative in various places on the Earth (VIRGO, LIGO, GEO300, TAMA300 . . . )
and even in space (LISA). Although experimentalists’ problems are very different
from the ones in this paper, if they succeed an excellent stimulus on waves for the
whole relativistic community (and even for the curiosity of the general public) will
be achieved.
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(Fig. 1). This is a remarkable property of plane waves but, as he pointed out,
it is also interesting to know “whether the somewhat strange properties of
plane waves encountered here will be present for waves which approximate
plane waves, but for which the spacetime is asymptotically flat, or asymp-
totically cosmological in some sense”. From our viewpoint, this is a relevant
question because the geometrical properties of an exact solution to Einstein’s
equation (as plane waves) are physically meaningful only if they are “stable”
in some sense – surely, this is not fulfilled by a term as H in formula (2)
below. Even more, in the setting of Penrose’s Strong Cosmic Censorship Hy-
pothesis [38], generic solutions to Einstein’s equation with reasonable matter
and behaviour at infinity must be globally hyperbolic. And, obviously, plane
waves fail to be generic and well behaved at infinity because of the many
symmetries of the term H (as well as the part M = (R2, dx2 + dy2)).

Fig. 1. Focusing of lightlike geodesics in plane waves; the picture is taken from [37]

Ehrlich and Emch, in a series of papers [20–22] (see also [4, Ch. 13]),
carried out a detailed investigation of the behaviour of all the geodesics ema-
nating from a (suitably chosen) point p in a gravitational plane wave. Then,
they showed that gravitational plane waves are causally continuous but not
causally simple, and characterized points necessarily connectable by geodesics
(see Subsect. 5.1). However, again all of the study relies on the “non-generic
nor stable” conditions of symmetry of the gravitational wave and on the very
special form of H(x, u): independence of the choice of the point p, explicit in-
tegrability of geodesic equations, identical equations for Killing fields, Jacobi
fields and geodesics.

In this framework, our goals in [15, 24] were, essentially: (i) to intro-
duce the class of reasonably generic waves (1), (ii) to justify that, for a
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physically reasonable asymptotic behaviour of the wave, |H(·, u)| must be
“subquadratic” (plane waves lie in the limiting quadratic case), and (iii) to
show that, in this case, the geometry of the wave presents good global prop-
erties, including global hyperbolicity [24] and geodesic connectedness [15].
Even more, the instability of these geometric properties in the quadratic case
leads to interesting questions in Riemannian Geometry, studied in [13].

In the present article, we explain the role of the mathematical tools intro-
duced in [13,15,24] in relation to classical papers on waves such as [19,37], and
to later developments [29–33, 44]. For proofs we refer to the original articles
or, in the case of more recent results, we provide sketches.

This paper is organised as follows:
In Sect. 2, some general properties of PFWs are explained, including ques-

tions related to curvature and the energy conditions. Remarkably, we justify
that the behaviour of |H(x, u)| for large x must be subquadratic if the wave
is assumed to be finite or with fronts asymptotically flat in any reasonable
sense. This becomes relevant from the viewpoint of classical general relativ-
ity, and the global geometrical properties of PFWs will depend dramatically
on the possible quadratic behaviour of H or −H (for any dimension n ≥ 1
of M).

In Sect. 3, we show that the behaviour of all the causal curves can be
essentially controlled in a PFW (the more accurate control for existence of
causal geodesics is postponed to Sect. 5). In Subsect. 3.1 a detailed study of
the causal hierarchy of PFWs is carried out. In particular, Penrose’s above-
mentioned question is answered by showing that the causal hierarchy of plane
waves is “unstable” or “critical”: deviations in the superquadratic direction
of −H may transform them in non-distinguishing spacetimes, but deviations
in the (more realistic) subquadratic direction yield global hyperbolicity. Sub-
sequent results by Hubeny, Rangamani and Ross [32] are also discussed. In
Subsect. 3.2 the criterion for the non-existence of horizons posed by Hubeny
and Rangamani [30,31] is explained, and a simple proof showing that it holds
for any PFW is given.

In Sect. 4, geodesic completeness is studied. We claim that this prob-
lem is equivalent to a purely Riemannian problem (Theorem 2), which has
been solved satisfactorily only for autonomous H, i.e., H(x, u) ≡ H(x). The
power of the known autonomous results (which yield completeness for at
most quadratic H(x), Theorem 3) is illustrated by comparison with the ex-
amples in [29]. Then, we claim the necessity to improve the non-autonomous
ones. Moreover, the Ehlers–Kundt conjecture deserves a special discussion.
Even though easily solvable under at most quadraticity for x (Theorem 4),
it remains open in general.

In Sect. 5, the problems related to geodesic connectedness are studied. The
key is to reduce the problem to a purely Riemannian problem, concretely, the
classical variational problem of finding critical points for a Lagrangian type
kinetic energy minus (time-dependent) potential energy. That is, solving this
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classical problem becomes equivalent to solving the geodesic connectedness
problem in PFWs. Remarkably, in order to obtain the optimal results on
waves (extending Ehrlich-Emch’s ones) we had to improve the known Rie-
mannian results; in the Appendix, this Riemannian problem is explained.
Finally, the existence of conjugate points is discussed, and reduced again to a
purely Riemannian problem. Energy conditions tend to yield conjugate points
for causal geodesics. But, in agreement with the other results of the present
paper, the focusing property of lighlike geodesics in plane waves (Fig. 1)
becomes highly non-generic.

2 General Properties of the Class of Waves

2.1 Definitions

Let us start with some simple properties of the metric (1). The assumed
geometrical background material can be found in well-known books such
as [4, 27, 36]. Following [36], vector 0 will be regarded as spacelike instead of
lightlike.

The vector field ∂v is absolutely parallel (i.e., covariantly constant) and
lightlike, and the time-orientation will be chosen to make it past-directed.
Thus, for any future-directed causal curve z(s) = (x(s), v(s), u(s)),

u̇(s) = 〈ż(s), ∂v〉 ≥ 0 ,

and the inequality is strict if z(s) is timelike. As gradu = ∂v, coordinate
u : M → R plays the role of a “quasi-time” function [4, Def. 13.4], i.e., its
gradient is everywhere causal and any causal segment γ with u ◦ γ constant
(necessarily a lightlike pregeodesic without conjugate points) is injective. In
particular, the spacetime is causal (see also Sect. 3.1). The hypersurfaces u ≡
constant are degenerate, with the kernel of the metric spanned by ∂v. The
hypersurfaces (non-degenerate n-submanifolds) of these degenerate hypersur-
faces which are transverse to ∂v, must be isometric to open subsets of M .
The fronts of the wave (1) will be defined as the (whole) n-submanifolds at
constant u, v.

According to Ehlers and Kundt [19] (see also [8]) a vacuum spacetime is
a plane-fronted gravitational wave if it contains a shearfree geodesic lightlike
vector field V , and admits “plane waves” – spacelike (two-)surfaces orthog-
onal to V . The best known subclass of these waves are the (gravitational)
“plane-fronted waves with parallel rays” or pp-waves, which are character-
ized by the condition that V is covariantly constant, ∇V = 0. Ehlers and
Kundt gave several characterizations of these waves in coordinates, and they
obtained that (at least locally) the metric can be written as in (1) with
M = R

2. Nowadays, pp-wave means any spacetime which admits a covari-
antly constant lightlike vector field [45, p. 383]. Even though, in general, their
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fronts may be “non-plane”, this happens in the most relevant cases (four
dimensional spacetimes which are either vacuum, or solutions to Einstein-
Maxwell equations, or pure radiation fields), where expression (1) holds with
M = R

2. In what follows, we will use the name “pp-waves” to denote the
classical spacetimes (1) with M = R

2. The pp-wave is gravitational (i.e.,
vacuum, see Subsect. 2.2) if and only if the “spatial” (transverse) Laplacian
∆xH(x, u) vanishes. Plane waves constitute the (highly symmetric) subclass
of pp-waves with H exactly quadratic in x for appropriate global coordinates
on each front; that is, when we can assume:

H(x, u) = (x1, x2)
(
f1(u) g(u)
g(u) −f2(u)

)(
x1

x2

)
(2)

where f1, f2, g are arbitrary (smooth) functions. When f1 ≡ f2, the plane
wave is gravitational, and there are other well-known subclasses (“sandwich
plane wave” if f1, f2, g have compact support; “purely electromagnetic plane
wave” if f1 ≡ −f2, g ≡ 0, etc.)

Recall that, in our type of metrics (1), no restriction on the Riemannian
part (M, 〈·, ·〉R) is imposed. This seems convenient for different reasons as,
for example: (i) the generality in the dimension n, for applications to strings,
(ii) the generality in the topology, for discussions of horizons, or (iii) the
generality in the metric, to obtain “generic results”, not crucially dependent
on very special particular properties of the metric. In this context, a name
such as “M -fronted wave with parallel rays” (Mp-wave) seems natural for our
spacetimes (1). Nevertheless, we will maintain the name PFW (plane-fronted
wave) in agreement with previous references [15, 24] and the nomenclature
in [4], but with no further pretension.

2.2 Curvature and Matter

Fixing some local coordinates x1, . . . , xn for the Riemannian part M , it is
straightforward to compute the Christoffel symbols of 〈·, ·〉 and, thus, to relate
the Levi–Civita connections ∇,∇R for M and M , respectively (see [15]). We
remark the following facts:

– M is totally geodesic, i.e., ∇∂i
∂j = ∇R

∂i
∂j , i, j = 1, . . . , n.

– 2∇∂u
∂u = −gradxH(x, u) + ∂uH(x, u)∂v; 2∇∂i∂u = ∂iH(x, u)∂v; thus,

the curvature tensor satisfies

− 2R(·, ∂u, ∂u, ·) = HessxH(x, u)(·, ·) . (3)

Here gradxH and HessxH denote the spatial (or “transverse”) gradient
and Hessian of H, respectively.

– The Ricci tensors of M and M satisfy

Ric =
n∑

i,j=1

R
(R)
ij dxi ⊗ dxj − 1

2
∆xHdu⊗ du .
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Thus, Ric is zero if and only if both the Riemannian Ricci tensor Ric(R)

and the spatial Laplacian ∆xH vanish.

From the last item, it is easy to check that the timelike convergence condition
holds if and only if

Ric(R)(ξ, ξ) ≥ 0, ∆xH ≤ 0, for all x ∈ M, ξ ∈ TxM .

Even more, in dimension 4 all the energy conditions are equivalent and easily
characterized [24, Proposition 5.1]:

Proposition 1. Let M = M × R
2 be a 4-dimensional PFW, and let K(x)

be the (Gauss) curvature of the 2-manifold M . The following conditions are
equivalent:

(A) The strong energy condition (Ric(ξ, ξ) ≥ 0 for all timelike ξ).
(B) The weak energy condition (T (ξ, ξ) ≥ 0 for all timelike ξ).
(C) The dominant energy condition (−T a

b ξ
b is either 0 or causal and future-

pointing, for all future-pointing timelike ξ ≡ ξb).
(D) Both inequalities:

K(x) ≥ 0, ∆xH(x, u) ≤ 0, ∀(x, u) ∈ M × R .

2.3 Finiteness of the Wave and Decay of H at Infinity

Now, let us discuss minimal necessary assumptions which must be satisfied
by a PFW to be “finite” or “asymptotically vanishing” in any reasonable
sense. In principle, one could think that M should be asymptotically flat,
but we will not impose this strong condition a priori (i.e., non-trivial fronts
at a “cosmological scale” are admitted). In any case, it would not be too
relevant for our problem: plane waves have flat fronts and are not finite by
any means.

As we have said, all the scalar curvature invariants of a gravitational pp-
wave vanish. Thus, instead of such scalars, we will focus on the spatial Hessian
HessxH. In the case of plane waves, HessxH is essentially the matrix in (2) –
it can be viewed as the transverse frequency matrix of the lightlike geodesic
deviation [37]. By equality (3), HessxH is related to the most “characteristic”
curvatures of the wave; these curvatures – taken along a lightlike geodesic –
admit an intrinsic interpretation in terms of the Penrose limit (see [9], espe-
cially the discussions around formulas (1.2), (2.13)). According to [30,31], “to
go arbitrarily far” in a pp-wave can be thought of as taking v, x large for each
fixed u (see also Subsect. 3.2). Therefore, any sensible definition of finiteness
or asymptotic vanishing of the PFW seems to imply that HessxH(x, u) must
go (fast) to 0 for large x.

Rigourously, let λi(x, u), i = 1, . . . , n, be the eigenvalues of HessxH(x, u),
d(·, ·) the Riemannian distance on M and fix any x̄ ∈ M . From the above
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discussion, if the wave vanishes asymptotically then limd(x,x̄)→∞ λi(x, u) must
vanish fast for each u. Therefore, putting |λ(x, u)| equal to the maximum of
the |λi(x, u)|’s, we can assume as definition of asymptotic vanishing for a
PFW:

|λ(x, u)| ≤ A(u)
d(x, x̄)q(u)

(4)

for some continuous functions A(u) and q(u) > 0.
Inequality (4) implies bounds for the spatial growth of |H|, as the next

proposition shows. But, first, let us introduce the following definition. Let
V (x, u) be a continuous function V : M × R → R. We will say that V (x, u)
behaves subquadratically at spatial infinity if

V (x, u) ≤ R1(u)dp(u)(x, x̄) +R2(u) ∀(x, u) ∈ M × R ,

for some continuous functions R1(u), R2(u)(≥ 0) and p(u) < 2. If the last
inequality is relaxed into p(u) ≤ 2,∀u ∈ R then V (x, u) behaves at most
quadratically at spatial infinity. Now, we can assert the following result (see
[24, Proposition 5.3] for the idea of the proof – notice that the completeness
of M is not necessary now, as any curve can be approximated by broken
geodesics).

Proposition 2. If the PFW vanishes asymptotically as in (4), then
|H(x, u)| behaves subquadratically at spatial infinity.

The following must be emphasized:

1. The condition of asymptotic vanishing (4) implies subquadraticity for
|H(x, u)|, but the converse is not true. In the remainder of this paper, we
will use only this more general subquadratic condition or, even, only the
subquadraticity (or at most quadraticity) of H or −H. So, the range of
application of our results will be wider.

2. Of course, inequality (4) is compatible with the energy conditions. A sim-
ple explicit example can be constructed by taking H(x1, x2, u) ≡ Hu(x1),
and, putting x ≡ x1:

− A(u)
|x|q(u)

≤ d2Hu

dx2
(x) ≤ 0

for some A(u), q(u) > 0.
3. For plane waves, neither H nor −H behaves subquadratically. In fact, the

eigenvalues of HessxH(x, u) are independent of x, and the fronts of the
wave are not “finite”. This is a consequece of the idealized symmetries of
the front waves. Nevertheless, |H(x, u)| behaves at most quadratically at
infinity and, thus, plane waves lie in the limiting quadratic situation.
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3 Causality

3.1 Positions in the Causal Ladder

Recall first the causal hierarchy of spacetimes [4]:

Globally hyperbolic ⇒ Causally simple ⇒ Causally continuous
⇒ Stably causal ⇒ Strongly causal

⇒ Distinguishing ⇒ Causal ⇒ Chronological

Roughly, a spacetime is causal if it does not contain closed causal curves,
strongly causal if there are no “almost closed” causal curves and stably causal
if, after opening slightly the light cones, the spacetime remains causal. It
is commonly accepted that stable causality is equivalent to the existence
of a continuous time function (see [4, 27], and also [43, Sect. 4]), but only
recently has the existence of a smooth time function with nowhere lightlike
gradient – i.e., a “temporal” function – been proven [7]. Globally hyperbolic
spacetimes can be defined as the strongly causal ones with compact diamonds
J+(p) ∩ J−(q) for any p, q. They were characterized by Geroch as those
possessing a Cauchy hypersurface (which can be also chosen smooth and
spacelike [6]). PFWs are always causal (Sect. 2) and the following result was
proven in [24]:

Theorem 1. Any PFW with M complete and −H spatially subquadratic is
globally hyperbolic.

The following points must be emphasized:

1. The proof is carried out by showing strong causality and the compactness
of the diamonds. From the technique, one can also check that, if −H is at
most quadratic at spatial infinity, then the spacetime is strongly causal
(with no assumption on the completeness of M).

2. Hubeny, Rangamani and Ross [32] constructed explicitly a temporal func-
tion for plane waves. As the light cones of an at most quadratic pp-wave
can be bounded by the cones of a plane wave, they claim that any pp-wave
with −H at most quadratic at spatial infinity is stably causal. (They also
use the temporal function to study quotients of the wave by the isometry
group generated by a spacelike Killing field, which may be stably causal
or non-chronological, see also [33]).

Recall from the Introduction that gravitational plane waves are
causally continuous (the set valued maps I± are outer continuous) but
not causally simple (because the causal future or past of a point may be
non-closed).

3. If −H(x, u) were not at most quadratic, then the spacetime may be even
non-distinguishing (the chronological future or past of two distinct points
are equal). In fact, a wide family of non-distinguishing examples with
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−H “arbitrarily close” to at most quadratic (and M complete) is con-
structed in [24, Proposition 2.1]; in these PFWs, the chronological futures
I+(x, v, u) depend only on u. In particular, any pp-wave such that −H
behaves as |x|2+ε, ε > 0 for large |x| is non-distinguishing [24, Example
2.2].

Nevertheless, the spatially subquadratic or at most quadratic be-
haviour of −H is not necessary for global hyperbolicity or strong/stable
causality, as explicit counterexamples [24, Example 4.5] show (additional
hypotheses must be assumed, see [32, Sect. 4]).

4. A curious phenomenon, suggested in [32, Sect. 4], is that the class of
distinguishing but non-stably causal pp-waves (or even PFWs) might be
empty. In this respect, our technique in [24] suggests that, if non-empty,
the class would be scarcely significant.

The technique involved for Theorem 1 can be understood as follows. Any
future-directed timelike curve α can be reparametrized by the quasi-time u:
α(u) = (x(u), v(u), u), u ∈ [u0, u1]. The proof is based on inequalities which
relate the distance covered by x(u) with the extreme points of v(u). For fixed
ε > 0 and 0 < u1 − u0 ≤ ε, u ∈ [u0, u1]:

1
ε2

∫ u

u0

d2(x(s), x(u0))ds ≤
∫ u

u0

〈ẋ(s), ẋ(s)〉Rds

< 4 (R′
2 · (u− u0) − (v(u) − v(u0)))

where the constant R′
2 = R′

2(u0, ε) is independent of x(u0) in the sub-
quadratic case (in the finer proof of strong causality for the at most quadratic
case, R′

2 is allowed to depend on a compact subset where x(u0) lies, and ε > 0
is not fixed a priori). Then, such an inequality is used:

– For the proof of strong causality, to show that, fixed a small neighborhood
N of a point z0 (which can be chosen “rectangular” in the coordinates
v, u, i.e., N = N× ] v−, v+ [ × ]u−, u+ [ ), and any causal curve with ex-
tremes in this neighborhood, the restrictions on the extremes for v(u), u
(v0, v1 ∈ ] v−, v+ [ , u0, u1 ∈ ]u−, u+ [ ) also imply restrictions on the dis-
tance between x(u0), x(u1). This forces the whole curve x(u) to remain in
a controlled neighborhood of N .

– For global hyperbolicity, to prove also that the projections of each diamond
J+(p)∩J−(q) ⊂ M ×R

2 on each factor M,R2 are bounded for the natural
(complete) Riemannian distances d on M and du2 + dv2 on R

2. Therefore
J+(p) ∩ J−(q) will be included in a compact subset, which in turn yields
its compactness.

3.2 Causal Connectivity to Infinity and Horizons

Next, let us comment on the applicability of these techniques to the study
of horizons in PFWs. The possible existence of horizons in gravitational



On the Geometry of pp-Wave Type Spacetimes 89

pp-waves and, in general, in vanishing scalar curvature invariant (VSI)
spacetimes, have attracted interest recently, especially motivated by poten-
tial applications to string theory. Hubeny and Rangamani [30,31] proposed a
criterion for the existence of horizons in pp-waves, and they proved the non-
nexistence of such horizons. In a more standard framework, Senovilla [44]
proved the non-existence of closed trapped or nearly trapped surfaces (or sub-
manifolds in any dimension) in VSI spacetimes. Next, we will give a simple
proof of the non-existence of horizons, in the sense of Hubeny and Ranga-
mani, for an arbitrary PFW.

Hubeny-Rangamani’s criterion [30, Sects. 2.2, 4] can be reformulated as
follows2: A pp-wave spacetime (or, in general, any PFW) M does not ad-
mit an event horizon if and only if, given any points z0 = (x0, v0, u0), z1 =
(x1, v1, u1) ∈ M with u0 < u1, there is −v∞ > −v1 such that a future-
directed causal curve from z0 to z∞ = (x1, v∞, u1) exists. According to the
authors, this criterion tries to formalize the intuitive idea that any point of
the spacetime is visible to an observer who is “arbitrarily far”. In fact, one
may think of u1 as being close to u0 and of x1 as being far3 from x0.

To check that this criterion is satisfied for any PFW, choose any curve
α starting at z0 parametrized by u, α(u) = (x(u), v(u), u), u ∈ [u0, u1] such
that x(u1) = x1. Putting Eα(u) = 〈α̇(u), α̇(u)〉 = 〈ẋ(u), ẋ(u)〉R + 2v̇(u) +
H(x(u), u), the function v(u) can be re-obtained from Eα(u) as:

v(u) − v0 =
1
2

∫ u

u0

(Eα(ū) − 〈ẋ(ū), ẋ(ū)〉R −H(x(ū), ū)) dū, ∀u ∈ [u0, u1] .

Choosing Eα < 0 the curve α becomes timelike and future directed and, as
|Eα| can be chosen arbitrarily big (and even constant, if preferred), the value
of −v(u1) can be taken arbitrarily big, as required.

4 Geodesic Completeness

4.1 Generic Results

From the direct computation of Christoffel symbols of a PFW, it is straight-
forward to write the geodesic equations in local coordinates. Remarkably, the
three geodesic equations for a curve z(s) = (x(s), v(s), u(s)), s ∈ ] a, b [ , can
be solved in the following three steps [15, Proposition 3.1]:

(a) u(s) is any affine function, u(s) = u0 + s∆u, for some ∆u ∈ R.

2There is a change of sign for v in comparison to this reference because our
convention for the metric uses du dv instead of −du dv.

3Nevertheless, in our reformulation x1 may also be “non-far” from x0 (in fact,
“to be far” would make no sense if M were compact or bounded). The criterion
will hold in this strong sense.
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(b) Then x = x(s) is a solution on M of

Dsẋ = −gradxV∆(x(s), s) for all s ∈ ] a, b [ ,

where Ds denotes the covariant derivative and V∆ is defined as4 :

V∆(x, s) = − (∆u)2

2
H(x, u0 + s∆u) ;

(c) Finally, with a fixed v0 and an s0 ∈ ] a, b [ , v(s) can be computed from:

v(s) = v0 +
1

2∆u

∫ s

s0

(Ez − 〈ẋ(σ), ẋ(σ)〉R + 2V∆(x(σ), σ)) dσ

where Ez = 〈ż(s), ż(s)〉 is a constant (if ∆u = 0 then v = v(s) is also
affine).

In particular, geodesic completeness is reduced, essentially, to the complete-
ness of trajectories for (non-autonomous) potentials on M , and one can
prove [15, Theorem 3.2]:

Theorem 2. A PFW is geodesically complete if and only if the Riemannian
manifold M is complete and the trajectories of

Dsẋ =
1
2

gradxH(x, s)

are also complete.

Recall that the completeness of M is an obvious necessary condition (the wave
fronts are totally geodesic) and, then, the question is fully reduced to a purely
Riemanian problem: the completeness of the trajectories of the potential V =
−H/2. This problem was studied by several authors in the 1970s [18, 25, 46]
and they obtained very accurate results when the potential is autonomous,
i.e., H independent of u. For example, a result by Weinstein and Marsden [46]
(see also [1, Theorem 3.7.15] or [15, Sect. 3]), formulated in terms of positively
complete functions, yields as a straightforward consequence:

Theorem 3. Any PFW with M complete and H(x, u) ≡ H(x) at most
quadratic is geodesically complete.

Recall that here only H (and not −H) needs to be controlled. As an example
of the power of this result, one can check that the explicit examples of pp-
waves exhibited in [29], which were proven to be complete (by integrating

4The subscript ∆ for V (and similarly in formula (5) below, for J ) is only an
abbreviation to keep track of ∆u. Notice that the dependence of V on ∆u will be
important for geodesic connectedness and the existence of conjugate points, but we
will get rid of it for geodesic completeness.
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– decoupled – geodesic equations), lie under the hypotheses5 of Theorem
3. For example, for PP1 (see [29, Sect. 5.2]), H(x) = cosx2 − coshx1; for
PP2, H(x) = −

∑
j fj(xj) with the fj ’s bounded from below; in both cases,

H is upper bounded. On the other hand, their incomplete examples strongly
violate the conditions of Theorem 3. For example, for the monopole pp-waves
in PP3 the Riemannian part M may be incomplete, and for the example PP4
one has the highly violating coefficient H(x) = −ex2

sinx1.
Nevertheless, the results for non-autonomous potentials are not so accu-

rate [25]. But this is the case of plane waves, which are geodesically complete
in any dimension (see [15, Proposition 3.5]) and, then, to find general and
accurate criteria seems an interesting topic for further research.

4.2 Ehlers–Kundt Question

From a fundamental viewpoint, the following question on pp-waves (M = R
2)

was posed by Ehlers and Kundt [19] (see also [8] or [29]):

Is any complete gravitational pp-wave a plane wave?

As they pointed out, complete gravitational pp-waves represent graviton fields
generated independently of matter (vacuum) or external sources (complete-
ness). Thus, they are analogous to source-free photons in electrodynamics.

Notice that the hypotheses become relevant for both the physical inter-
pretation and the involved mathematical problem. In fact, from Theorem 2
(with V = −H/2) and the fact that linear terms in the expression of H in (2)
can be dropped by choosing appropriate coordinates, the previous question
is equivalent to:

Let V ((x, y), s), V : R
2 × R → R be an harmonic function in (x, y).

If the trajectories for V as a (non-autonomous) potential on R
2 are

complete, must V be a (harmonic) polynomial of degree ≤ 2 for each
fixed s (i.e., V ((x, y), s) = f(s)(x2 − y2) + 2g(s)xy + c(s)x+ d(s)y +
e(s))?

Notice that the harmonicity of H allows us to use techniques from complex
analysis. In fact, it is easy to show:

Theorem 4. Any gravitational pp-wave such that H(x, u) behaves at most
quadratically at spatial infinity is a (necessarily complete ) plane wave.

To prove this, put ζ = x+iy, H ≡ H(ζ, u) and consider the complex function
f(ζ, u) which is holomorphic in ζ with real part equal to H. Then, f(ζ, u)/ζ2

is meromorphic for ζ ∈ C and bounded for big ζ. Thus, for each u, whenever
f(·, u) is not constant, it presents a pole at infinity of order 1 or 2. That is,

5For the comparison of hypotheses, recall that their function F (x, u) plays the
role of our −H(x, u).
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f(·, u) is a complex polynomial of degree at most 2, and the result follows
directly.

Even though Theorem 4 covers the most meaningful cases from the phys-
ical viewpoint (and is free of hypotheses on completeness), in general the
above question remains open as a mathematical problem with roots in the
foundations of the theory of gravitational waves.

5 Geodesic Connectedness and Conjugate Points

5.1 The Lorentzian Problem

Next, we will study geodesic connectedness of PFWs, that is, we will ask: fixed
any z0 = (x0, v0, u0), z1 = (x1, v1, u1) ∈ M, is there any geodesic connecting
z0, z1? This problem becomes relevant from different viewpoints (see [41] for
a survey): (a) the connectivity of a point z0 with any point z1 ∈ I+(z0)
through a timelike geodesic admits an obvious physical interpretation, and is
satisfied by all globally hyperbolic spacetimes (Avez–Seifert result), (b) the
geodesic connectedness of a Lorentzian manifold – through geodesics of any
causal type – is a desirable geometrical property6, which admits a natural
variational interpretation and, then, yields an excellent motivation to study
critical points of indefinite functionals from a mathematical viewpoint [34],
(c) the possible multiplicity of connecting geodesics is related to the existence
of conjugate points.

These questions were studied by Penrose [37] and Ehrlich and Emch [20–
22] for plane waves, by integrating geodesic equations. They proved that
there exists a natural concept of conjugacy for pairs u0, u1 ∈ R, u0 < u1, and
obtained the following results:

1. (Penrose). Lightlike geodesics are focused when u0, u1 are conjugate (at
least for “weak” sandwich waves). In this case, all the lightlike geodesics
starting at z0 (except one)
– either cross a fixed point with u = u1 (anastigmatic conjugacy, in

electromagnetic plane waves),
– or cross a fixed line (astigmatic conjugacy, in gravitational or mixed

plane waves).
2. (Ehrlich-Emch). The connectable points for astigmatic gravitational plane

waves can be characterized in an accurate way:
– if u1 lies before the first conjugate point of u0, then there exists a

unique geodesic between z0 and z1, which is causal if z0 < z1 ;
– otherwise, connecting geodesics may not exist and, in fact, gravitational

plane waves are not geodesically connected.

6This is trivially satisfied for complete Riemannian manifolds but not necessarily
for complete Lorentzian ones, such as de Sitter spacetime.
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5.2 Relation with a Purely Riemannian Variational Problem

From the study of geodesic equations in Sect. 4, and the classical relation
between connecting trajectories for a potential and extremal of Lagrangians,
it is not difficult to prove [15]:

Proposition 3. For fixed z0, z1 ∈ M, the following statements are equiva-
lent:

(a) z0 and z1 can be connected by a geodesic.
(b) There exists a solution for the Riemannian problem

{
Dsẋ(s) = −gradxV∆(x(s), s) for all s ∈ [0, 1]
x(0) = x0, x(1) = x1 ,

where V∆(x, s) = − (∆u)2

2 H(x, u0 + s∆u), ∆u = u1 − u0.
(c) There exists a critical point for the action functional J∆ defined on the

space of absolutely continuous curves x : [0, 1] → M which connect x0, x1,

J∆(x) =
1
2

∫ 1

0

〈ẋ, ẋ〉R ds −
∫ 1

0

V∆(x, s) ds . (5)

Of course, (c) is the most classical problem in Lagrangian Mechanics. Nev-
ertheless (as a surprise for us), it had not been fully solved in the quadratic
case. This case corresponds to plane waves and, thus, in order to obtain op-
timal Lorentzian results (re-obtaining in particular Ehrlich-Emch’s), we had
to improve the known Riemannian ones. The final Riemannian result [13] is
the following (see the Appendix for a discussion of the problem):

Theorem 5. Let (M, 〈·, ·〉R) be a complete (connected ) n-dimensional Rie-
mannian manifold. Assume that V ∈ C1(M × [0, 1],R) is at most quadratic
in x in the following way:

V (x, s) ≤ λd2(x, x̄) + µdp(x, x̄) + k ∀(x, s) ∈ M × [0, 1] ,

for some fixed point x̄ ∈ M and constants p < 2, λ, µ, k ≥ 0.
If λ < π2/2 then, for all x0, x1 ∈ M , there exists at least one critical point

(in fact, an absolute minimum ) of J∆ in (5). In particular, this happens if
V is subquadratic, i.e., when λ = 0.

If, additionally, M is not contractible, then there exists a sequence of
critical points {xm}m such that

lim
m→+∞

J∆(xm) → +∞ .

One can also assume that λ (as well as p, µ, k) depend on s, and then take
the maximum of λ([0, 1]) (and the others) for the conclusion.
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5.3 Optimal Results for Connectedness of PFWs

Now, the application of Proposition 3 and Theorem 5 (plus a further dis-
cussion for the case of causal geodesics) directly yields the following result.
Notice that the limit value λ = π2/2 in Theorem 5 is related to (∆u)2 in
the expression of V∆ in Proposition 3(b); thus, in the at most quadratic case,
stronger conclusions hold when (∆u)2 is smaller than a critical value.

Theorem 6. Let M be a PFW with M complete, and fix x̄ ∈ M . Then:

(1) If −H(x, u) is spatially subquadratic, then M is geodesically connected.
(2) If −H(x, u) is at most quadratic with

−H(x, u) ≤ R0(u) d2(x, x̄) +R1(u) dp(u)(x, x̄) +R2(u)

∀(x, u) ∈ M × R, p(u) < 2, then z0 = (x0, v0, u0), z1 = (x1, v1, u1) ∈ M,
u0 ≤ u1 can be connected by means of a geodesic whenever

R0[u0, u1] (u1 − u0)2 < π2 ,

where
R0[u0, u1] = Max{R0(u) : u ∈ [u0, u1]} .

Moreover, in any of the previous cases (1), (2):

(a) If z0 < z1 there exists a length-maximizing causal geodesic connecting z0
and z1;

(b) If M is not contractible:
(i) There exist infinitely many spacelike geodesics connecting z0 and z1,
(ii) The number of timelike geodesics from z0 to zv = (x1, v, u1) goes to

infinity when −v → ∞.

It must be emphasized that these results are optimal because the Riemannian
results are optimal. In fact:

– There are explicit counterexamples if any of the hypotheses is dropped.
– In the case of gravitational plane waves, the conclusions of Theorem 6

not only generalize Ehrlich-Emch’s ones, but also yield bounds for the
appearance of the first astigmatic conjugate pair – a lower bound is the
value u+ (u+ > u0) such that R0[u0, u+](u+ − u0)2 = π2.

– All the results can be naturally extended to the case of M being non-
complete with convex boundary.

5.4 Conjugate Points

From the above approach to geodesic connectedness it is also clear that, now,
the existence of conjugate points for geodesics on a PFW is equivalent to the
existence of conjugate points for the action J∆. More precisely, following [24,
Sect. 6], we can define:
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Definition 1. Fix z0 = (x0, u0), z1 = (x1, u1) ∈ M × R, and let x(s) be a
critical point of J∆ in (5) with endpoints x0, x1 and ∆u = u1 − u0. We say
that z0, z1 are conjugate points along x(s) of multiplicity m if the dimension
of the nullity of the Hessian of J∆ on x(s) is m (if m = 0 we say that z0, z1

are not conjugate).

Then, one obtains the following equivalence between conjugate points for
Lorentzian geodesics and conjugate points for Riemannian trajectories of a
potential [24, Proposition 6.2]:

Proposition 4. The pairs z0 = (x0, u0), z1 = (x1, u1) are conjugate of mul-
tiplicity m along x(s) if and only if for any geodesic z : [0, 1] → M with
z(s) = (x(s), v(s),∆u · s+ u0) the corresponding endpoints z0 = (x0, v0, u0),
z1 = (x1, v1, u1) are conjugate with the same multiplicity m = m.

As we mentioned in Subsect. 5.1, in the particular case of gravitational plane
waves, conjugate pairs are defined for u0, u1. For general PFWs, the lack
of symmetries of the fronts makes it necessary to take care of the M part.
Nevertheless, the dependence on v is still dropped.

Now, studying the conjugate points for J∆, one can obtain easily results
as [24, Proposition 6.4]: If H is spatially convex (i.e. HessxH(x, u)(w,w) ≥ 0,
∀w ∈ TxM) and the sectional curvature of M is non-positive, then no geodesic
admits conjugate points. Of course, the hypotheses of this result go in the
wrong direction with respect to the energy conditions (∆xH ≤ 0,K ≥ 0),
which tend to yield conjugate points. Nevertheless, this focusing of geodesics
is, in general, qualitatively different from the focusing in the plane-wave case
and, as we have seen, it does not forbid global hyperbolicity.

Appendix: The Riemannian Problem of Connectedness
by the Trajectories of a Lagrangian

In Sect. 5 we showed that geodesic connectedness of PFWs depends crucially
on the Riemannian variational result Theorem 5. This result is an answer to
the classical Bolza problem, which can be stated as:

Bolza problem. For fixed x0, x1 in a Riemannian manifold M and
some T > 0, determine the existence of critical points for the func-
tional

JT (x) =
1
2

∫ T

0

〈ẋ, ẋ〉R ds−
∫ T

0

V (x, s) ds

on the set of absolutely continuous curves with x(0) = x0, x(T ) = x1.

In our case, T = 1, V is smooth and at most quadratic, and M is complete.
For this problem, it is well-known that two abstract conditions on JT , namely,
boundedness from below and coercivity, imply the existence of a critical point
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– in fact a minimum. Even more, by using Ljusternik–Schnirelmann theory
one can ensure the existence of a sequence of critical points such that JT

diverges.
The following results were known:

1. If V (x, s) is bounded from above or subquadratic in x, then the two
abstract conditions hold and JT attains a minimum.

2. If V (x, s) is at most quadratic, with V (x, s) ≤ λd2(x, x̄) + µdp(s)(x, x̄) +
k(s), p(s) < 2,∀s ∈ [0, T ] then:
– Clarke and Ekeland [16] proved that, if T < 1/

√
λ, then JT still admits

a minimum.
– If T ≥ π/

√
2λ there are simple counterexamples to the existence of

critical points (harmonic oscillator).

Therefore, there was a gap for the values of T ,

T ∈ [ 1/
√
λ, π/

√
2λ [ ,

which was covered only in some particular cases (for example, if HessxV ≥ 2λ,
then JT still admits a minimum). Our results in [13] (essentially, Theorem
5) fill this gap, by showing that, even in the case T ∈ [ 1/

√
λ, π/

√
2λ [ , the

functional JT is bounded from below and coercive and, thus, admits a mini-
mum.

The proof was carried out in three steps:

– Step 1. The essential term to prove the abstract conditions for JT is
d2(x(s), x̄). Then, consider the new functional

Fλ
T (x) =

1
2

∫ T

0

〈ẋ, ẋ〉R ds − λ

∫ T

0

d2(x(s), x̄) ds .

JT is essentially greater than Fλ
T and, if Fλ

T is bounded from below and
coercive, then so is JT (recall that the expression of Fλ

T contains d2(·, x̄),
which is only continuous, but we are not looking for critical points of this
functional).

– Step 2. Reduction to a problem in one variable. For each curve x(s) in the
domain of JT , one can find a continuous curve y(s), s ∈ [0, T ], almost every-
where differentiable, such that (assuming x̄ = x0 without loss of generality)
y(0) = 0, y(T ) = d(x0, x1) and:

ẏ(s) = |ẋ(s)| a.e. in [0, s0], ẏ(s) = −|ẋ(s)| a.e. in ] s0, T ] ,

for some suitable s0. For this curve y(s),

Fλ
T (x) ≥ 1

2

∫ T

0

|ẏ|2 ds − λ

∫ T

0

|y|2 ds . (6)

And, then, one has just to prove that the new (1-dimensional ) functional
Gλ

T (y), equal to the right hand side of (6), is coercive and bounded from
below.
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– Step 3. Solution of the 1-variable problem forGλ
T (y) by elementary methods

(Fourier series, Wirtinger’s inequality).

The technique also works for manifolds with boundary [14]. Remarkably, the
procedure has also been used to prove the geodesic connectedness of static
spacetimes under critical quadratic hypotheses [3] (see also [42]), and other
related problems.
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Abstract. After a short introduction to the characteristic geometry underlying
weakly hyperbolic systems of partial differential equations we review the notion
of symmetric hyperbolicity of first-order systems and that of regular hyperbolic-
ity of second-order systems. Numerous examples are provided, mainly taken from
nonrelativistic and relativistic continuum mechanics.

1 Introduction

The notion of hyperbolicity of a partial differential equation (PDE), or a
system of PDE’s, is central for the field theories of mathematical physics.
It is closely related to the well-posedness of the Cauchy problem and to the
causal structure underlying these theories. In standard theories describing
relativistic fields in vacuo this causal structure is that given by the spacetime
metric, a second-order symmetric tensor of Lorentzian signature. If matter is
included, things become both more complicated and more subtle. In fact, the
awareness of some of those complications predates Relativity by centuries.
An example is afforded by the phenomenon, already studied by Huygens, of
birefringence in crystal optics1.

There is currently an increase of attention in the field of Relativity, due in
part to demands from Numerical Relativity, devoted to certain notions of hy-
perbolicity applied to the Einstein equations (for an excellent review see [18]).
There the main challenge, not discussed in the present notes at all, comes
from the fact that, already in vacuum, the Einstein equations by themselves,
i.e. prior to the imposition of any gauge conditions, are not hyperbolic. The
main burden, then, is to find a “hyperbolic reduction” turning the Einstein
equations, or a subset thereof, into a hyperbolic system appropriate for the
purpose at hand. However the complications in the causal structure one finds
in continuum mechanics, which are our main focus here, are absent in the
Einstein vacuum case – at least for the reductions proposed so far. Of course,
these complications do come into play ultimately once matter-couplings are
included.

1For a fascinating account of the history of the associated mathematics see [20].

R. Beig: Concepts of Hyperbolicity and Relativistic Continuum Mechanics, Lect. Notes Phys.
692, 101–116 (2006)
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These notes attempt an elementary introduction to some notions of hy-
perbolicity and the “characteristic geometry” associated with or underlying
these notions. The section following this one is devoted to the general notion
of a hyperbolic polynomial, which in our case of course arises as the charac-
teristic polynomial of a PDE. It is interesting that this notion is on one hand
restrictive enough to encode essentially all the required features of a theory
in order to be “causal” – on the other hand flexible enough to account for an
amazing variety of phenomena – relativistic or nonrelativistic – ranging from
gravitational radiation to water waves or phonons in a crystal. We devote a
significant fraction of Sect. 2 to examples, which at least in their nonrela-
tivistic guise all appear in the standard literature such as [13], though not
perhaps from the unified viewpoint pursued here. Some of these examples are
not fully worked out, but perhaps the interested reader is encouraged to fill in
more details, possibly using some of the cited literature. We hope that some
workers in Relativity, even if they have little interest in continuum mechan-
ics for its own sake, find these examples useful for their understanding of the
notion of hyperbolicity. While hyperbolicity of the characteristic polynomial
of a theory is important, it is not in general sufficient for the well-posedness
of the initial value problem for that theory. Well-posedness is the subject
of our Sect. 3. We recall the notion of a symmetric hyperbolic system of a
system of 1st order PDE’s, which is indeed sufficient for well-posedness. A
similar role for 2nd order equations is played by a class of systems, which
were to some extent implicit in the literature, and for which an elaborate
theory has been recently developed in [10,11]. These systems are called regu-
lar hyperbolic. They encompass many second order systems arising in physics
one would like to qualify as being hyperbolic – such as the Einstein equations
in the harmonic gauge. If applicable, the notion of regular hyperbolicity is
particularly natural for systems of 2nd order derivable from an action prin-
ciple, as is the case for many problems of continuum mechanics. We show
the fact, obvious for symmetric hyperbolic systems and easy-to-see although
not completely trivial for regular hyperbolic ones, that these systems are spe-
cial cases of weakly hyperbolic systems, i.e. ones the determinant of whose
principal symbol is a hyperbolic polynomial. We also touch the question of
whether a system of the latter type can be reduced to one of the former type
by increasing the number of dependent variables. Throughout this section our
treatment will be informal in the sense of ignoring specific differentiability
requirements. We also do not touch questions of global well-posedness.

2 Hyperbolic Polynomials

The PDE’s we are interested in are of the form

Mµ1...µl

AB (x, f, ∂f, . . . , ∂(l−1)f)∂µ1 . . . ∂µl
fB + lower order terms = 0 . (1)
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Here A,B = 1, ...,m and µi = 1, . . . , n. Relevant equations of this form
are the Euler equations for a barotropic fluid (for n = 4, l = 1,m = 4), the
Einstein equations (for n = 4, l = 2,m = 10) or the equations governing an
ideal elastic solid (for n = 4, l = 2,m = 3). The Maxwell equations, in the
form they are originally written down, are not of this form, but a suitable
subset of them is, as we will discuss later.

The principal symbol of the PDE (1) is defined as

MAB(k) = Mµ1...µl

AB kµ1 . . . kµl
, kµ ∈ (Rn)∗ (2)

We here suppress the dependence on x and on f . The characteristic poly-
nomial P (k) is defined by P (k) = det MAB(k), where the determinant is
taken with respect to some volume form on f -space ⊂ R

m. The polynomial
P (k) is homogenous of degree p = m · l. A homogenous polynomial of de-
gree p > 0 is called hyperbolic with respect to ξµ ∈ (Rn)∗ if P (ξ) �= 0 and
the map λ �→ P (η + λξ), itself a polynomial of degree p, has only real roots
λi, i = 1, · · · , p for all η ∈ (Rn)∗. The roots λi(ξ, η) need not be distinct.
If, for all η with η ∧ ξ �= 0, λi(ξ, η) �= λj(ξ, η) for i �= j, P is called strictly
hyperbolic2. We write C∗ for the set of k ∈ (Rn)∗ \ {0}, where P vanishes. It
is sometimes called the cone of characteristic conormals.

It is clear that a product of hyperbolic polynomials is hyperbolic. Also, if
a hyperbolic polynomial can be factorized into polynomials of lower degree
(in which case it is called reducible), these factors are also hyperbolic. There
is a wealth of information which can be inferred about a polynomial P (k) if
it is hyperbolic. Before explaining some of this, we look at a few examples
for hyperbolic polynomials.

Example 1. P (k) = (a, k) = aµkµ for some nonzero aµ ∈ R
n. The set C∗ is a

punctured hyperplane ⊂ (Rn)∗.
Clearly P (k) is hyperbolic with respect to any ξµ such that aµξµ �= 0. The

polynomial P (k) = (a1, k)(a2, k)(a3, k), with a1, a2, a3 linearly independent
∈ R

3, arises in the problem of finding, for a three dimensional positive definite
metric, a coordinate system in which the metric is diagonal (see [14]) – which
shows that hyperbolic problems can also arise in purely Riemannian contexts.

Example 2. P (k) = γµνkµkν , where γµν is a (contravariant) metric of Lor-
entzian signature (−,+, . . . ,+). The set C∗ is the two-sheeted Minkowski
light cone.

When n = 2, P (k) is hyperbolic with respect to any non-null ξµ, when
n > 2, P (k) is hyperbolic with respect to any ξµ with γµνξµξν < 0, i.e. ξ
is timelike with respect to γµν . Checking that P (k) is hyperbolic accord-
ing to our definition is equivalent to the so-called reverse Cauchy-Schwarz

2This case is not general enough for the purposes of physics. Furthermore there
exist physically relevant cases of non-strictly hyperbolic polynomials which are sta-
ble, in the sense that they possess open neighbourhoods in the set of hyperbolic
polynomials just containing non-strictly hyperbolic ones [26,28].
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inequality for two covectors one of which is timelike or null with respect
to γµν (which is the mathematical rationale behind the twin “paradox” of
Relativity). Surprisingly there are similar inequalities for general hyperbolic
polynomials (see [19]) which play a role in diverse fields of mathematics [5].

Example 2 is of course the most familiar one. If it arises from nonrela-
tivistic field theory, the quantity γµν currently runs under the name of the
“Unruh or acoustic metric” [4] (see also [12]) in the Relativity community.
It is not an elementary object of the theory, but is built as follows: Take
first the Galilean metric hµν , a symmetric tensor with signature (0,+, . . . ,+)
together with a nonzero covector τµ satisfying hµντν = 0: these are the ab-
solute elements . Then pick a 4-vector uµ normalized so that uµτµ = 1 and
define γµν = hµν − c−2uµuν . This describes waves propagating isotropically
at phase velocity c in the rest system, defined by uµ, of a material medium.
The relativistic version of the above is as follows: Start with the spacetime
metric gµν and define γµν = gµν + (1 − c−2)uµuν , where uµ is normalized
by taking τµ = −gµνu

ν , with gµν the covariant spacetime metric defined by
gµνg

νλ = δµ
λ. Note: if there are metrics γµν

1 ,γµν
2 with c2 < c1, then the

“faster” cone lies inside the slower one. We will come back to this point later.

Example 3. P (k) = sµνkµkν , where sµν has signature (−,+, ...,+, 0, ..., 0), is
hyperbolic with respect to any ξ such that sµνξµξν < 0.

Here is a case occurring in the real world. Let gµν be a Lorentz metric on
R

4, uµ a normalized timelike vector, i.e. gµνu
µuν = −1, Fµν = F[µν] nonzero

with Fµνu
ν = 0. The quadratic form sµν = −euµuν + 1/2 FρσF

ρσgµν −
Fµ

ρF
νρ, with e > 0, has signature (−,+,+, 0). The characteristic cone C∗

of P (k) = 0 consists of two hyperplanes punctured at the origin. When e
is interpreted as e =“energy density + pressure” and Fµν as the frozen-
in magnetic field of an ideally conducting plasma, then P (k) describes the
Alfvén modes of relativistic magnetohydrodynamics [45] [2].

Example 4. Let n = 4, εµνλρ some volume form on R
4 and mµνλρ = m[µν][λρ].

With Gµνρσ = εαβδε εκφψω mαβκ(µmν|δφ|ρmσ)εψω we define P by P (k) =
Gµνρσkµkνkρkσ.

As a special case take mµνλρ of the form mµνλρ = hλ[µhν]ρ − eλ[µuν]uρ +
eρ[µuν]uλ, where the symmetric tensors hµν and sµν , both of signature (0,++
+), satisfy hµντν = eµντν = 0 for uµτµ �= 0: this is the situation encountered
in crystal optics with the nonzero eigenvalues of eµν relative to hµν being
essentially the dielectric constants. The crystal is optically biaxial or triaxial,
depending on the number of mutually different eigenvalues. The 4th order
polynomial P (k) turns out to be hyperbolic with respect to all ξµ in some
neighbourhood of ξµ = τµ , and the associated characteristic cone is the
Fresnel surface (see e.g. [25]). For an optically isotropic medium or in vacuo
P (k) is reducible, in fact the square of a quadratic polynomial of the type of
Example 2. We leave the details as an exercise. More general conditions on
mµνλρ in order for P (k) to be hyperbolic can be inferred from [32].
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The quartic polynomial P (k), as defined above, comes from a general-
ized (“pre-metric”) version of electrodynamics (see [24]), as follows: Let Fµν

be the electromagnetic field strength and write Hµν = mµνλρFλρ for the
electromagnetic excitation. The premetric Maxwell equations then take the
form

∂[µ(ενλ]ρσH
ρσ) = Jµνλ, ∂[µFνλ] = 0, (3)

where Jµνλ is the charge three form3. The (3) reduce to the standard ones
in vacuo when mµνλρ ∼ gλ[µgν]ρ with gµν the metric of spacetime. If one
sets mµνλρ = γλ[µγν]ρ, with γµν = hµν − c−1uµuν , hµν the Galilean metric
and uµ a constant vector field s.th. uµτµ = 1, one has the Maxwell equations
in a “Galilean” (not Galilean-invariant) version with uµ describing the rest
system of the aether (see [43]). One then looks at hypersurfaces along which
singularities can propagate. The result is that the conormal nµ of such sur-
faces has to satisfy P (n) = 0. Put differently, one can look at the 8 x 6 –
principal symbol of the Maxwell equations: then P (k) = 0 is exactly the con-
dition for this principal symbol to have nontrivial kernel. If one considered an
appropriately chosen subset amongst (3), the evolution equations, one would
obtain an equation of the form (1), whose characteristic polynomial contains
P (k) as a factor. We will treat the vacuum case of this later.

Our last and most complicated example comes from elasticity [6]:

Example 5. Take n = 4, l = 2,m = 3 in (1) with

Mµν
AB = −GABu

µuν + Cµν
AB , (4)

where GAB = G(AB) and Cµν
AB = Cνµ

BA and Cµν
ABτν = 0 for some covector

τ satisfying (u, τ) = uµτµ = 1. The theory is intrinsically quasilinear: all
quantities entering (4) are functions of f and ∂f and in general also of x. For
example fA is required to have maximal rank, and uµ satisfies uµ(∂µf

A) = 0.
Furthermore Cµν

AB = CADBE(∂ρf
D)(∂σf

E)hρµhσν , with hµν , τµ being, in the
nonrelativistic case, the absolute Galilean objects, or, in the relativistic case,
hµν = gµν + uµuν and τµ = −gµνu

ν .
There are the following basic constitutive assumptions.

GAB is positive definite, Cµν
ABm

AmBηµην > 0 for m �= 0, η ∧ τ �= 0 (5)

Defining the linear map (M)A
B by (M)A

B(k)=−(u, k)2δA
B+GADCµν

DBkµkν ,
the polynomial P (k) can, by general linear algebra, be written as

6 P (k) = (trM)3 − 3 (trM2)(trM) + 2 trM3 . (6)

It will follow from a more general result, to be shown below, that the 6th order
polynomial P (k) is hyperbolic with respect to ξµ in some neighbourhood of

3These equations play a certain role in current searches for violations of Lorentz
invariance in electrodynamics [30]
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τµ. In the special case of an isotropic solid, the “elasticity tensor” CABDE

has to be of the form

CABDE = l GABGDE + 2m GD(AGB)E , (7)

and the second of (5) is satisfied iff c22 = m > 0, c21 = l + 2m > 0. The
polynomial P (k) turns out to reduce to the form

P (k) ∼ (γµν
1 kµkν)(γρσ

2 kρkσ)2 (8)

with γµν
1,2 = hµν − c−2

1,2 uµuν . The quantities c1 and c2 are the phase ve-
locities of pressure and shear waves respectively. If the medium is elastically
anisotropic, such as a crystal, one can start by classifying possible fourth-rank
tensors CABDE according to the symmetry group of the crystal lattice, allow
for dislocations, etc. The richness of possible structure of C∗ and the corre-
sponding range of captured physical phenomena – studied by theoreticians
and experimentalists – is enormous.

This ends our list of examples. We now turn to some general properties
of hyperbolic polynomials and their physical interpretation. It is clear from
the definition that C∗ has codimension 1: since P (η+λξ) has to have at least
one complex root for each η, and the roots are all real, there is at least one
real root. And since there are no more than p · l different roots, C∗ can not
have larger codimension. It is then known from real algebraic geometry that
C∗ consists of smooth hypersurfaces outside a set of at least codimension 2
(see [9]). The roots λi(ξ, η) can for fixed ξ be assumed to be ordered according
to λ1 ≤ λ2 ≤ · · · ≤ λp for all η. The set of points k = η + λi(ξ, η)ξ is called
the i’th sheet of C∗. The hypersurface C∗ has to be smooth at all points k
lying on a line intersecting p different sheets4. In particular all sheets are
everywhere smooth when P is strictly hyperbolic.

Next recall that the defining property of a hyperbolic polynomial refers to
a particular covector ξ. That covector however is not unique. It is contained in
a unique connected, open, convex, positive cone Γ ∗(ξ) of covectors ξ′ sharing
with ξ the property that P (ξ′) �= 0 and P (η+λξ′) has only real zeros λi(ξ′, η)
[19]. Note that Γ ∗(ξ) = −Γ ∗(−ξ). Furthermore ∂Γ ∗(ξ) ⊂ C∗, and Γ ∗(ξ) is
that connected component of the complement of C∗ containing ξ. Not all
points of ∂Γ ∗(ξ) have to be smooth points of C∗.

The roots λi(ξ, η), i = 1, . . . , p, due to the homogeneity of P , are homoge-
nous in ξ of order −1 and positively homogenous of order 1 as a function
of η. They also satisfy λi(ξ, η) = −λp+1−i(ξ, η). At regular points of C∗, i.e.
when the gradient of P at η + λiξ is non-zero, λi(ξ, η) is a smooth function
of its arguments due to the implicit function theorem. Next choose a vec-
tor X ∈ R

n so that (X, ξ′) > 0 for all ξ′ ∈ Γ ∗(ξ). We call such a vector
4The reason is that a polynomial of order p in one real variable, if it has p

different zeros, has non-vanishing derivative at each zero, so k is a non-critical
point of P .
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“causal”. We now look at the intersection S of the hyperplane (X, ξ′) = 1
with C∗. Note (X, ξ′) = 1 is transversal to C∗ at smooth points of C∗, so S
is smooth there also. Note also that S may be empty, as in Example 1. For
reasons explained below, S is often called “slowness surface”. To describe S
more concretely, we pick some τ ∈ Γ ∗(ξ) with (X, τ) = 1. The pair X, τ
constitutes a “rest frame”. Using it, we can decompose every covector k as
kµ = τµ + k⊥µ where k⊥ is tangential to the hyperplane, i.e. (X, k⊥) = 0.
This k lies on C∗ iff λi(τ, k⊥) = 1 for some i. Thus S consists of the sheets
λJ(τ, k⊥) = 1, viewed as (n−2)-surfaces in k⊥ ∈ R

n−1. Here J runs through
some subset of the i’s parametrizing λi from above. Clearly, as J increases,
these sheets form a nested family of not necessarily compact surfaces5. The
innermost of these surfaces is nothing but the intersection of ∂Γ ∗(ξ) with the
hyperplane (X, ξ′) = 1 and is hence convex. We call C∗(ξ) those components
of C∗ which consist of half-rays connecting the origin with the points of S.
In the examples 2, 4, 5 the set S and C∗(ξ) consist of at most 1, respectively
2 and 3 sheets. For the last-mentioned case, see [15]. Not all the occurring
sheets are compact. It is possible for example for P (k) to be an irreducible hy-
perbolic polynomial with some sheets of S compact and others non-compact:
this is the case e.g. for the acoustic modes in magnetohydrodynamics [13].

We now explain the name “slowness surface”. Consider the hyperplane in
R

n given by (x, k) = 0 for fixed k ∈ C∗, i.e. the wave front of the plane wave
associated with k. To measure the “speed” at which this wave front moves,
decompose observers with tangent V which “move with this wave front”, i.e.
such that (V, k) = 0, according to V = X + v⊥. It follows that (v⊥, k⊥) =
−1. Thus, if there is a natural “spatial” metric h mapping elements l⊥ into
elements w⊥ = h ◦ l⊥ orthogonal to τ , one can define the “phase velocity”
v⊥ph = −‖k⊥‖−2 h◦k⊥. Thus, the smaller k⊥ is, the larger the phase velocity.
Of course the equation (v⊥, k⊥) = −1 does not define v⊥ uniquely. But there
is a “correct” choice for V tangential to the wave front, called “ray or group
velocity”, which is independent of any spatial metric, and which is defined
at least when k is a smooth point of C∗: this V is given by the conormal to
C∗ ⊂ (Rn)∗ at k, which by duality is a vector ∈ R

n. If k is in addition a non-
critical point, this ray velocity V µ is ∼ ∂/∂kµP (k), which satisfies kµV

µ = 0
by the positive homogeneity of P (k). The spatial group velocity in the frame
X, τ can then be written as which is also the textbook expression.

(v⊥gr)
µ(k⊥) =

(
τλ

∂P

∂kλ

)−1 (
δµ

ν −Xµτν
) ∂P

∂kν

∣∣∣∣
k=τ+k⊥

, (9)

We should add a cautionary remark here. Although the differential topol-
ogy of the slowness surface is independent of the choice of X satisfying
(X, ξ′) > 0 for all ξ′ ∈ Γ ∗(ξ), its detailed appearance, and physical quan-
tities such as phase velocity, group velocity or angle between two rays do

5In particular, when sheets seem to pass through each other, the two sides are
counted as belonging to different sheets.
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of course depend on the choice of rest system X, τ and a notion of spatial
metric with respect to that observer. Of course there will be, for any partic-
ular physical theory, a singled-out class of rest systems, e.g. τµ can be the
absolute object in a Galilean spacetime or be of the form τµ = −gµνX

ν in
a relativistic theory. Or the slowness surface can have more symmetry (say
symmetry with respect to reflection at the origin) in some rest system than in
others, as is the case with crystal optics or elasticity. For a careful discussion
of these issues, in the more specialized context of “ray-optical structures” on
a Lorentzian spacetime, consult [34].

We now come back to the “ray” concept. If k is a smooth critical point
of C∗, finding the map k �→ V (k) is already a nontrivial problem in algebraic
geometry [35]. If k is not a smooth point of C∗, there is no unique assignment
of a group velocity to k. Still well-defined is the set C of all V �= 0 satisfying

(V, k) = 0 where P (k) = 0 , (10)

called the dual or ray cone. Loosely speaking, each sheet of the ray cone cor-
responds to a spherical wave front tangent to (or “supported by”) the planar
wave fronts defined by the different points k in some corresponding sheet of
C∗ [13]. There holds (C∗)∗ = C. The dual cone is again an algebraic cone,
which, except in degenerate cases, is again the zero-set of a single homoge-
nous polynomial. The structure of this dual cone, in particular its singularity
structure which can be very complicated, is another difficult matter of real
algebraic geometry. For example the degree of its defining polynomial is in
general much higher than that of C∗ (see [37], [21]). This “dual” polynomial
need not be hyperbolic: in order to be hyperbolic it would have to have a
central sheet which is convex, which is not the case for some of the exam-
ples one finds in the literature. In our examples from above the situation
is as follows: In our Example 1 the dual cone C∗ consist of the two half-
lines {αaµ|α > 0} and {αaµ|α < 0}. The cone dual to the quadratic cone
gµνkµkν = 0 in Example 2 is given by gµνV

µV ν = 0 with gµνg
νλ = δµ

λ.
For a nonrelativistic acoustic cone γµν = hµν − (1/c2)uµuν we obtain for
the ray cone γµν = hµν − c2τµτν , where hµν is the unique tensor defined
by hµνu

ν = 0 and hµνh
νλ = δµ

λ − τµu
λ. If one has two sound cones, as in

isotropic elasticity, it is the faster ray cone which lies outside. In Example 3 C

is given as a subset of vectors Xµ in a linear space T , which is the annihilator
of the null space of sµν , namely where this subset is given by sµνX

µXν = 0,
where sµν is the inverse of sµν on T . In the magnetohydrodynamic example
the preceding statement corresponds to the fact that Alfvén waves “travel
along the direction of the magnetic field”. For Example 4 the ray cone C is
a 4th order cone of the same type as C∗, a fact already known by Ampère in
the case of crystal optics and shown generally in [36]. For anisotropic elas-
ticity the structure of the ray cone does not seem to be fully known, except
for a general upper bound on its degree, namely 150 on grounds of general
algebraic geometry (see [15], [37], [21]) and detailed studies for certain spe-
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cific crystal symmetries – which give rise to a beautiful variety of acoustic
phenomena [44]6.

3 Initial Value Problem

We now come to the issue of posing an initial value problem for hyperbolic
equations of the form of (1). This requires two things: firstly a notion of
“spacelike” initial value surface, secondly a notion of domain of dependance.
Not surprisingly these notions can be formulated purely in terms of the char-
acteristic polynomial. A hypersurface Σ in R

n will be called spacelike, if it
has a conormal nµ lying everywhere in Γ ∗(ξ) for some ξ. If the equation (1)
is nonlinear, every property concerning the characteristic polynomial has to
refer to the data of some reference field f0, i.e. the value of f0 on Σ and those
of its derivatives up to order l − 1. It is then the case that Σ is spacelike
also for any sufficiently near-by data. The reason is that ξ′ ∈ Γ ∗(ξ) can be
characterized by λ1(ξ, ξ′) > 0, and the eigenvalues λi, being zeros of a poly-
nomial having real roots only, depend continuously on the coefficients of this
polynomial [1]. A point x in R

n is said to lie in the domain of dependence
of Σ if each causal curve (i.e. each curve whose tangent vector X satisfies
(X, ξ′) �= 0 for all ξ′ ∈ Γ ∗(ξ)) through x which is inextendible intersects Σ
exactly once. The Cauchy problem for (1) is said to be well-posed if, for the
above data, there is a unique solution in some domain of dependence of Σ
and, secondly, if this solution depends in some appropriate sense continu-
ously on the data. The question then is whether well-posedness holds under
the above conditions. The answer is affirmative when (1) is linear with con-
stant coefficients and the lower-order terms are absent. Then the initial value
problem can be solved “explicitly” by using a fundamental solution (“Green
function” in the physics literature) – which in turn can be obtained e.g. by the
Fourier transform. By a refined version of a well-known argument in physics
texts concerning the wave equation in Minkowski space (see e.g. [3]), one can
show that the fundamental solution is supported in Γ (ξ), which is the closure
of the set of causal vectors just described. The set Γ (ξ) is a closed, convex
cone, dual to Γ ∗(ξ). If the outermost component of the cone C(ξ) dual to
C∗(ξ) is convex, its closure is the same as Γ (ξ), otherwise its convex closure
is the same as Γ (ξ). If one is interested in finer details than just wellposed-
ness, even the linear, constant-coefficient case becomes very nontrivial. An
example is the question of the existence of “lacunas”, i.e. regions in Γ (ξ)
where the fundamental solution vanishes. For isotropic elasticity mentioned
in Example 4, when c2 < c1 (which is the experimentally relevant case), the
fundamental solution vanishes inside the inner shear cone determined by c2.
(Note that “inner” and “outer” are interchanged under transition between

6There are computer codes designed for algebraic elimination, which might be
worth applying to this problem [23].
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normal and ray cone.) For anisotropic elasticity this issue, or the somewhat
related question of the detailed time decay, already presents great difficulties
(see [15,39]). The existence of lacunas for general, linear hyperbolic systems
with constant coefficients was studied in [3].

The problem now is that many field equations in physics give rise to vari-
able coefficients, to various forms of lower-order terms and-or nonlinearities.
But if one has a system of PDE’s with hyperbolic characteristic polynomial
(such systems are often called “weakly hyperbolic”) , which in addition has
a well posed initial value problem, a perturbation of the coefficients will in
general destroy the latter property (see e.g. [31]). It is thus hard to get any
further without additional assumptions. One such assumption is that of hav-
ing a symmetric hyperbolic system. This is given by a system of the form of
(1) with l = 1. It is furthermore assumed that

M µ
AB = M µ

(AB) (11)

and that there exists ξµ so that

MAB(ξ) = M µ
AB ξµ is positive definite . (12)

The symmetric hyperbolic system has a characteristic polynomial which is
hyperbolic with respect to ξ. To see this one simply observes that the equation

det(M µ
AB(ηµ + λξµ)) = 0 (13)

characterizes eigenvalues of the quadratic form MAB(η) relative to the metric
MAB(ξ) – and these eigenvalues have to be real. There is then, for quasilinear
symmetric hyperbolic systems, a rigorous existence statement along the lines
informally outlined at the beginning of this section [29]. The uniqueness part
uses the concept of “lens-shaped domains” (see e.g. [18]) which is essentially
equivalent to that of domain of dependence above.

Several field theories of physical importance naturally give rise to a sym-
metric hyperbolic system. An example is afforded by the hydrodynamics of
a perfect fluid both nonrelativistically and relativistically7. The most promi-
nent examples are perhaps the Maxwell equations in vacuo and the vacuum
Bianchi identities in the Einstein theory. For the latter this was first observed
in [17]. For completeness we outline a proof for the well-known Maxwell case
following [45]. We have that

∇νFµν = 0, ∇[µFνλ] = 0 (14)

with ∇µ being the covariant derivative with respect to gµν , a Lorentz metric
on R

4. These are 8 equations for the 6 unknowns Fµν . Next pick a timelike
vector field uµ with u2 = −1 and define electric and magnetic fields by

Eµ = Fµνu
ν , Bµνλ = 3F[µνuλ] , (15)

7For an elegant treatment of the latter, see [16]
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so that
Fµν = −2E[µuν] −Bµνλu

λ . (16)

We assume for simplicity that uµ is covariant constant, otherwise the ensuing
equations contain zero’th order terms which are of no concern to us. The
operator

∇µν = 2u[µ∇ν] (17)

contains derivatives only in directions orthogonal to uµ. Using Eq.’s (14) we
find the evolution equations

3∇[µνEλ] = −uρ∇ρBµνλ, ∇λρBνλρ = 2uρ∇ρEν . (18)

Taking now uλ∇ρ of (15), we rewrite the evolution equations in the form

Wµ′ν′λ
µν ∇λFµ′ν′ = 0 . (19)

Now take the positive definite metric

wµν = 2uµuν + gµν . (20)

Consider now the positive definite metric aµνλρ = 2wρ[µwν]λ on the space of
2-forms and use it to raise indices in Wµ′ν′λ

µν : One obtains quantities Wµνµ′ν′λ

satisfying

Wµνµ′ν′λ = Wµ′ν′µνλ, Wµνµ′ν′λuλ ∼ aµνµ′ν′
. (21)

Thus the (18) are symmetric hyperbolic with respect to uµ. For the charac-
teristic polynomial one finds

P (k) ∼ (uµkµ)2(gρνkρkν)2 . (22)

We now turn to 2nd order equations. Let us assume that the quantities
Mµν

AB of (1) satisfy
Mµν

AB = Mνµ
BA . (23)

This is necessarily the case when (1) comes from a variational principle,
because then

Mµν
AB ∼ ∂2L

(∂∂µfA)(∂∂νfB)
, (24)

where L = L(x, f, ∂f). Of course, since only the quantities M (µν)
AB enter the

differential equation (1), one might as well have assumed the stronger condi-
tions Mµν

AB = Mνµ
AB = Mµν

BA. This is not usually done in continuum mechanics.
The reason is that, while the PDE (and hence the characteristic polynomial)
is unaffected by the above symmetrization, other physical quantities in the
theory, like the stress, depend on the unsymmetrized object – and such ob-
jects typically enter, if not the equation, then the natural boundary conditions
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for the equation on the surface say of an elastic body (see [8]). A related rea-
son is that the symmetrized object would hide other symmetries – present
in some situations – which are more fundamental such as invariances un-
der isometries. For example the object CA(B|D|E), with CABDE the elasticity
tensor of (7), is not symmetric in (AB) and (DE). But the latter symmetry
is important for understanding the solutions of the linearized equations of
motion when the spacetime has Killing vectors. The work [10] also uses the
unsymmetrized form of Mµν

AB , the reason being that in this approach one is
only interested in properties of Mµν

AB which do not change when a total di-
vergence is added to the Lagrangian, and the stronger symmetry, if present,
would in general be destroyed by such an addition. Next it is assumed that
there exists a pair Xµ, ξν satisfying

Mµν
ABξµξν is negative definite (25)

and
Mµν

AB(mAηµ)(mBην) > 0 for all mAηµ �= 0 with (X, η) = 0 . (26)

The conditions (25,26) essentially state that the PDE is the sum of a “time-
like part” and an “elliptic part”, the latter obeying the Legendre-Hadamard
condition of the calculus of variations [22]. If the equation (1) has l = 2 and
satisfies (23,25,26), the system is called regular hyperbolic with respect to
ξ. We now check that every regular hyperbolic system with respect to ξ is
weakly hyperbolic with respect to ξ. The characteristic condition reads

det(Mµν
AB(ηµ + λξµ)(ην + λξν)) = 0 (27)

The covector η in (27) can be decomposed as η = (X,η)
(X,ξ) ξ + l where l sat-

isfies (X, l) = 0. Thus we can after redefining λ assume that η in (27) has
(X, η) = 0. Defining GAB = −MAB(ξ) = −Mµν

ABξµξν , VAB = MAB(η),
QAB = Mµν

(AB)ξµξν , consider the eigenvalue problem

Df̂ = λE f̂ , (28)

in

f̂ =
(
uA

vB

)

where the quadratic forms D, E are given by

D =
(

0 VAB

VAB 2QAB

)

and

E =
(
VAB 0

0 GAB

)
.

Since E is positive definite, all eigenvalues λ are real. But (28) for f̂ �= 0 is
equivalent to
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(−GABλ
2 + 2QABλ+ VAB)vB = 0 , (29)

for vA �= 0 which in turn is equivalent to (27). This proves our assertion that
regular hyperbolic systems are weakly hyperbolic. (Note that every “timelike
vector” X in the sense of (26) is causal, i.e. (X, ξ) �= 0 for all ξ ∈ Γ ∗(ξ),
but not conversely.) We can now come back to Example 5. The leading-order
coefficients Mµν

AB in (4) clearly belong to a regular hyperbolic system, when
we choose the vector Xµ ∼ uµ. It then follows from the preceding result that
the polynomial in (6) is indeed a hyperbolic polynomial.

As with symmetric hyperbolic systems, it turns out that there is, for regu-
lar hyperbolic systems, a local existence theorem [27] along the lines sketched
at the beginning of this section. The appropriate domain of dependence the-
orem is proved in [10].

One may ask the question if it is possible to convert a regular hyper-
bolic system into an equivalent symmetric hyperbolic one by introducing
first derivatives as additional dependent variables (at the price of course of
having to solve constraints for the initial data). (This was the approach we
originally followed for elasticity in [6], since we were unaware that there was
already an existence theorem which applied, namely [27]). If the condition
(12) is provisionally ignored, it turns out this is possible provided that Mµν

AB

is of the form of (4) for some pair uµ, τν , i.e. certain cross-terms vanish8. But
the positivity condition (12) will not always be satisfied. (Essentially this re-
quires the ”rank-one positivity” condition (26) to be replaced by the stronger
rank-two positivity: Mµν

ABm
A

µm
B

ν > 0 for all mA
µ �= 0 with XµmA

µ = 0.)
In the case of isotropic elasticity it was shown in [6] that one can add to Mµν

AB

a term of the form Λµν
AB , which has the symmetries Λµν

AB = Λ
[µν]
[AB], so that

both the field equations and the requirement (23) remains unchanged, but
at the same time condition (12) is valid. However it is an algebraic fact that
such a trick does not always work (see [38,42]).

Finally let us mention the notion of strong hyperbolicity, which is inter-
mediate between weak hyperbolicity and symmetric or regular hyperbolicity
in the first or second order case respectively. This notion, which involves the
tool of pseudodifferential reduction [40,41], also gives wellposedness but has
greater flexibility, see [33] for applications to the Einstein equations. It would
be interesting to see if the chain “weakly hyperbolic – strongly hyperbolic –
symmetric or regular hyperbolic” has an analogue for PDE’s of order greater
than 2.
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Abstract. In this contribution I will review some basic results on elliptic boundary
value problems with applications to General Relativity.

1 Introduction

Elliptic problems appear naturally in physics mainly in two situations: as
equations which describe equilibrium (for example, stationary solutions in
General Relativity) and as constraints for the evolution equations (for ex-
ample, constraint equations in Electromagnetism and General Relativity). In
addition, in General Relativity they appear often as gauge conditions for the
evolution equations.

The model for all elliptic equations is the Laplace equation. Let us consider
the Dirichlet boundary-value problem for this equation

∆u = f on Ω, u = g on ∂Ω , (1)

where Ω is a bounded, smooth, domain in R
n with boundary ∂Ω; f, g are

smooth functions and ∆ is the Laplace operator in R
n.

It is a well known result that for every source f and every boundary
value g there exist a unique, smooth, solution u of (1). We would like to gen-
eralize equations (1) for more general operators and more general boundary
conditions.

The first step in this generalization is given by the Neumann problem

∆u = f on Ω, ni∂iu = 0 on ∂Ω , (2)

where ni is the outward unit normal to ∂Ω, the index i takes values i =
1, . . . , n and ∂i denotes partial derivative with respect to the R

n coordinate
xi.

There exist two main differences between the Neumann and the Dirichlet
problem: (i) The solution to the Neumann problem is not unique, for a given
solution we can add a constant and obtain a new solution. Moreover, the
constants are the only solutions of the homogeneous problem

∆u = 0 on Ω, ni∂iu = 0 on ∂Ω . (3)

S. Dain: Elliptic Systems, Lect. Notes Phys. 692, 117–139 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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To see this, we multiply (3) by u and use the divergence theorem

0 =
∫

Ω

u∆u =
∫

Ω

∂i(u∂iu) − ∂iu∂iu (4)

=
∮

∂Ω

uni∂iu−
∫

Ω

∂iu∂iu (5)

= −
∫

Ω

∂iu∂iu . (6)

(ii) The source f cannot be arbitrary. We integrate in Ω equation (2) to
obtain a necessary condition for f

0 =
∮

∂Ω

ni∂iu =
∫

Ω

∆u =
∫

Ω

f . (7)

The following theorem says that (7) is also a sufficient condition for the
existence of a solution.

Theorem 1. A solution u to the Neumann problem (2) exists if and only if
f satisfies ∫

Ω

f = 0 . (8)

Two different solutions differ by a constant.

The fact that the solution is not unique in the Neumann problem does
not affect the physics of the model that is described by these equations. Take,
for example, electrostatics. The electric field Ei satisfies

Ei = −∂iu, ∂iE
i = f , (9)

where u is the electric potential and f the charge. If we prescribe Eini at
the boundary we get a Neumann boundary problem for the potential u. The
electric field Ei is invariant under the transformation u → u + c, where c
is a constant. We will see in Sect. 3 that something similar happens for the
constraint equations in General Relativity.

We have seen that the Neumann problem has not a unique solution. If
we include lower order terms in the operator, the Dirichlet problem will not
have a unique solution either. For example, for some constants λ > 0 (the
eigenvalues) the following equations have a non-trivial solutions (eigenfunc-
tions)

∆u+ λu = 0 on Ω , u = 0 on ∂Ω . (10)

One of the main ideas in the theory of partial differential equations is
that many relevant properties of the equations depend only on the principal
part, that is on the terms with highest derivatives. The previous examples
show that uniqueness does not depend only on the principal part. Motivated
by the Neumann problem, we write the following the two main properties of
elliptic equations
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(i) The solutions space of the homogeneous problem (i.e., when we set the
source f and the boundary values g equal to zero) is finite dimensional.

(ii) The solution will exist if and only if the sources satisfy a finite number
of conditions.

We will see in the next sections that, under appropriate assumptions, (i)–(ii)
depend only on the principal part of the equation and boundary conditions.

One example of a boundary condition that does not satisfy (i) is the
following.

Example 1. Let Ω be the unit ball in R
3 centered at the origin. Consider the

following homogeneous boundary-value problem

∆u = 0 on Ω, ∂3u = 0 on ∂Ω . (11)

An explicit calculation shows that the space of solutions of this problem is
infinite dimensional (see [27], Chap. 1, for details). In the next section we
will see that this is related to the fact that the vector ∂3 is tangential to the
boundary at the points x3 = 0, x2

1 + x2
2 = 1.

2 Second Order Elliptic Equations

Consider the following, second order, differential operator

Lu = ∂i

(
aij(x)∂ju+ bi(x)u

)
+ ci(x)∂iu+ d(x)u , (12)

where we will assume that the coefficients are smooth functions on R
n and

i, j = 1, . . . n. We have written the operator (12) in divergence form because
it will be more suitable for the following calculations; since the coefficient aij

and bi are smooth, this is equivalent to the standard formula

Lu = aij(x)∂i∂ju+ b̂j(x)∂ju+ d̂(x)u . (13)

where b̂j = ∂ja
ij + bj + cj and d̂ = ∂ib

i + d.
The principal part of the operator is given by the terms which contains

only second derivatives
l(x, ∂) = aij(x)∂i∂j . (14)

To define the symbol of L we replace in the principal part each derivative by
the component of an arbitrary constant vector in R

n

l(x, ξ) = aij(x)ξiξj , ξ ∈ R
n . (15)

The symbol l of L is a polynomial of order 2 in the components of ξ.
We make now the crucial assumption on the symbol. We say that the

operator L is elliptic in Ω̄ if
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l(x, ξ) �= 0 ∀x ∈ Ω̄, ξ ∈ R
n, ξ �= 0 . (16)

The next important concept is the formal adjoint of L. The formal adjoint
Lt is defined by the relation

∫

Ω

vLu =
∫

Ω

uLtv (17)

for all u, v of compact support in Ω. In this particular case we have

Ltv = ∂j

(
aij(x)∂iv − cj(x)v

)
− bi(x)∂iv + d(x)v (18)

Note that ∆ = ∆t.
We have already seen in the case of the Laplacian that the solutions of

the homogeneous problem play an important role; in general L and Lt are
different operator and then we have two natural null spaces defined as

N (L) = {u : Lu = 0 on Ω and u = 0 on ∂Ω} (19)

N (Lt) = {u : Ltu = 0 on Ω and u = 0 on ∂Ω} . (20)

We can now formulate an existence result for the Dirichlet problem which
will essentially ensure that properties (i)–(ii) are satisfied.

Theorem 2. (i) Precisely one of the following statements holds:
a) For each f there exists a unique solution of the boundary-value problem

Lu = f on Ω, u = 0 on ∂Ω , (21)

or else
b) N (L) is non-trivial.
(ii) Furthermore, should assertion b) hold, the dimension of N (L) is finite
and equals the dimension of N (Lt).
(iii) Finally, the boundary-value problem (21) has a solution if and only if

∫

Ω

fv = 0 for all v ∈ N (Lt) . (22)

We will consider now the analog of the Neumann problem for L. If in the
integration by parts given by (17) we allow functions u and v which are not
of compact support, we have to include the boundary terms; and we obtain
the following relation which is called the Green formula for the operator L

∫

Ω

vLu− uLtv =
∮

∂Ω

vBu− uBtv , (23)

where the differential boundary operators are given by

Bu = nja
ij∂iu+ biniu, Btv = nja

ij∂iv − ciniv . (24)
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We want to solve the following problem

Lu = f on Ω, Bu = 0 on ∂Ω . (25)

As in the case of the Dirichlet problem, we define the null spaces

N (L,B) = {u : Lu = 0 on Ω and B(u) = 0 on ∂Ω} (26)

N (Lt, Bt) = {u : Ltu = 0 on Ω and Bt(u) = 0 on ∂Ω} . (27)

We have the following existence result, which looks exactly the same as the
previous theorem if we replace the Dirichlet condition by the new boundary
condition.

Theorem 3. (i) Precisely one of the following statements holds:
a) For each f there exist a unique solution of the boundary-value problem

Lu = f on Ω, Bu = 0 on ∂Ω , (28)

or else
b) N (L,B) is non-trivial.
(ii) Furthermore, should assertion b) hold, the dimension of N (L,B) is finite
and equals the dimension of N (Lt, Bt).
(iii) Finally, the boundary-value problem (28)–(24) has a solution if and only
if ∫

Ω

fv = 0 for all v ∈ N (Lt, Bt) . (29)

We have written the boundary conditions in the form (24) in order to em-
phasize that they come naturally from the integration by parts. It is possible
to write them in a perhaps more familiar form. Define the vector βi by

βi = nja
ij . (30)

By the elliptic condition (16) we have βini �= 0, that is βi it is never tangential
to the boundary (this excludes Example 1). In the operator L only enters the
symmetric part of the matrix aij , however, we have not assumed that this
matrix is symmetric in the previous theorem. If we decompose aij = aij

s + bij

where aij
s = a

(ij)
s and bij = b[ij] is an arbitrary anti-symmetric matrix, then

βi = nja
ij
s + τ i, τ i = njb

ij , (31)

where τ i is an arbitrary tangential vector. Choosing appropriated bi and
ci such that they do not change the operator L, we get that the function
σ = bini is also arbitrary. We conclude that the boundary condition B(u) = 0
is equivalent to

Bu = βi∂iu+ σu = 0 , (32)

where σ is an arbitrary function and βi is an arbitrary non-tangential vector
field on the boundary.
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Let us compare Theorem 2 and 3 with the analog cases for the Laplace
equation. We have now two operators L and Lt which have two different null
spaces (in the case when bi + ci = 0 we have L = Lt and B = Bt, and then
only one null space). There are no statements about uniqueness or about
the elements and dimension of the null spaces. We have already seen that
these properties depend on the lower order terms. For the particular case of
second order elliptic operators, there exists an important tool that can give
uniqueness and a characterization of the null space for certain kind of lower
order terms: the maximum principle. There exist many useful versions of
the maximum principle (see for example [14]), here we mention a particular
simple case, which can be generalized to other situations as we will see.

We can write the Green formula (23) in terms of a first order bilinear
form B

B(u, v) =
∮

∂Ω

vBu−
∫

Ω

vLu =
∮

∂Ω

uBtv −
∫

Ω

uLtv (33)

where
B(u, v) =

∫

Ω

(aij∂ju+ biu)∂iv − (ci∂iu+ du)v . (34)

From this equation we deduce that u ∈ N (L,B) if and only if B(u, v) = 0
for all v. (One “if” is trivial; to see the other one, take test functions v
which vanish at the boundary and are arbitrary in the interior). If we assume
bi = ci = 0 and d ≤ 0, then B is symmetric (i.e. B(u, v) = B(v, u)) and
positive,

B(u, u) ≥ 0 for all u . (35)

Moreover, B(u, u) = 0 if and only if u is a constant and u = 0 if d is not
identically zero. In this case we are in a similar situation as in the Neumann
problem for the Laplace equation: the only elements of the null space are the
constants. More general versions of the maximum principle can be used to
prove the followings refinements of Theorems 2 and 3.

Theorem 4. Assume d ≤ 0. Then the Dirichlet problem

Lu = f on Ω, u = g on ∂Ω , (36)

has a unique solution for every f and g.

Theorem 5. Assume d ≤ 0, σ ≥ 0 and not both identically zero. Let βi a
vector field such that βini > 0 on ∂Ω. Then the oblique derivative problem

Lu = f on Ω, βi∂iu+ σu = g on ∂Ω , (37)

has a unique solution for every f and g.

In both theorems, the maximum principle can be used also to prove that the
solution is positive if the sources and boundary values are positive.
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Note that in Theorems 2 and 3 the null spaces for the operator and the
adjoint have the same dimension. We will see in the next section that this
will not be the case for more general operators and boundary conditions.

We conclude this section with some examples.

Example 2. The most important second order elliptic operator is the Lapla-
cian on a Riemannian manifold. It is given by

Lu = ∆hu = hijDiDju , (38)

where h is a Riemannian metric (aij = hij) and D its corresponding co-
variant derivative. One important example of lower order term is given by
the conformal Laplacian which appears naturally in the Einstein constraint
equations

Lu = ∆hu− R

8
u , (39)

where R is the Ricci scalar of hab.
For a Riemannian metric, the principal part of the boundary condition

B(u) has a geometric interpretation

Bu = niDiu, (40)

where we use the standard convention ni = hijnj . That is, the vector n is
now the unit normal vector with respect to the metric hij . This is sometimes
denoted as conormal boundary condition.

An example of lower order boundary terms is the following

Bu = niDiu+Hu , (41)

where H is the mean curvature of the boundary Ω with respect to the metric
hij . This boundary condition appears in connection to black holes (see [21]
and [8]).

3 Elliptic Systems

3.1 Definition of Ellipticity

We saw in the previous section that ellipticity is a positivity condition on
the symbol of the equation. In order to generalize this concept for systems of
equations (this includes as particular case higher order equations) we need
to define the symbol of a system. We can use the same idea as before, and
define the principal part as the collection of terms which have the highest
order derivatives. That is, consider the following differential operator in R

n

L(u) =
∑

|α|≤2m

aα(x)∂αu , (42)
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where α is a multi-index, and the coefficients aα are N × N matrices. The
principal part is defined as

l(x, ∂) =
∑

|α|=2m

aα(x)∂α , (43)

and the symbol
l(x, ξ) =

∑

|α|=2m

aα(x)ξα . (44)

The operator is elliptic if det l(x, ξ) �= 0 for every x ∈ Ω̄ and ξ �= 0. This is the
definition that appears in most text books; we will call it classical ellipticity
(there is no general agreement on the nomenclature, in most places these
systems are called just elliptic). This definition excludes many important
examples; the most remarkable is perhaps the Laplace equation as a first
order system (Example 3). In order to include these cases, we need to be more
flexible in our definition of the principal part; in particular it is important
to allow terms of different orders in it. The appearance of terms of different
orders in the principal part is a particular feature of systems which is not
present in higher order equations.

It will be convenient to use a more explicit notation as the one given in
(43). Let u1, . . . , uN be functions which depend on the coordinates x1, . . . , xn.
The operator (42) can be written as follows.

Lµν(x, ∂)uν(x) = fµ(x), ν, µ = 1, . . . , N , (45)

where Lµν are polynomials in (∂1 . . . , ∂n) with coefficients depending on x.
[Lµν ] is a N ×N matrix, not necessarily symmetric. Note that N (dimension
of the vectors uν) and n (dimension of R

n) are in general different numbers.
Let s1, . . . , sN , t1, . . . , tN be integers (some may be negative) such that

deg(Lµν) ≤ sµ + tν , (46)

where deg means the degree of the polynomial Lµν in the derivatives ∂. The
integers sµ are attached to the equations and the tν to the unknowns.

We define the principal part lµν(x, ∂) as the terms in Lµν which are exactly
of order sµ + tν . The symbol lµν(x, ξ) is obtained replacing in the principal
part the derivatives by a vector ξ. We define the following polynomial in ξ.

l(x, ξ) = det(lµν(x, ξ)) . (47)

The degree m of the systems is given by

m =
1
2

deg(l(x, ξ)) , (48)

where deg means degree in ξ.
The following general definition of ellipticity was introduced in [9]
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Definition 1 (Douglis-Nirenberg Ellipticity). The system (45) is el-
liptic if there exist integer weights sµ and tν which satisfy (46) such that
l(x, ξ) �= 0 for all real ξ ∈ R

n, ξ �= 0, x ∈ Ω̄, where l(x, ξ) is given by (47).

For n = 2 we assume in addition

Definition 2 (Supplementary Condition). l(x, ξ) is of even degree 2m.
For every pair of linearly independent real vectors ξ and ξ′, the polynomial
l(x, ξ+ τξ′) in the complex variable τ has exactly m roots with positive imag-
inary parts.

Every elliptic system in dimension n ≥ 3 satisfies the supplementary
condition (see [1]). This is no longer true for n = 2, as Example 5 shows.
A system that is elliptic in the sense of Definition 1 and satisfies also the
supplementary condition (Definition 2) will be called properly elliptic.

Note that the definition depends on the weights sµ and tν which are not
unique, a system can be elliptic for many different choices of weights. Also
note that the number 2m is not related in general with the degree of the
highest derivatives; for example for a second order system with N = 3 we
have m = 3 (Example 6). The degree m is important because it gives the
number of boundary conditions we have to impose in order to get a well
defined elliptic problem, as we will see in the next section.

There exists an important class of elliptic operators for which the Dirichlet
boundary conditions will always satisfy (i)–(ii) as we will see in the next
section. These systems are given by the following definition.

Definition 3 (Strong Ellipticity). The system is called strongly elliptic if
sν = tν ≥ 0 and there exist a constant ε > 0 such that

Re (lµν(x, ξ)ηµη̄ν) ≥ εηµη̄µξ
iξi , (49)

for all real ξ ∈ R
n and all complex η ∈ C

N .

Note that every elliptic equation (i.e., N = 1) is strongly elliptic. Let us
discuss some examples.

Example 3 (Laplace equation as a first order system). This example was taken
from [2]. Consider the Laplace equation in two dimensions

∂2
1u+ ∂2

2u = 0 . (50)

Every equation can be written as a first order system if we introduce the
derivatives of the unknown as new variables. That is, let u1 = ∂1u and
u2 = ∂2u. Then we have the following system (n = 2 and N = 3)

∂1u1 + ∂2u2 = 0 , (51)
∂1u− u1 = 0 , (52)
∂2u− u2 = 0 . (53)
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In the matrix notation



0 ∂1 ∂2

∂1 −1 0
∂2 0 −1








u
u1

u2



 = 0 . (54)

In the classical definition, the symbol is constructed only with the terms
which contain the highest order derivatives, in this case only with the terms
with one derivative. Then the determinant of the symbol is

∣∣∣∣∣∣

0 ξ1 ξ2
ξ1 0 0
ξ2 0 0

∣∣∣∣∣∣
= 0 , (55)

and we conclude that the system is not classically elliptic.
Take the weights t1 = 2, t2 = t3 = 1, for u, u1, u2 and s1 = 0, s2 = s3 =

−1, to the first, second and third equations, respectively. Then, we have
∣∣∣∣∣∣

0 ξ1 ξ2
ξ1 −1 0
ξ2 0 −1

∣∣∣∣∣∣
= ξ21 + ξ22 , (56)

and the system is elliptic with m = 1. Another possible choice for the weights
is the following: si = ti, with t1 = 1, t2 = t3 = 0.

Since n = 2, we have to check also that it satisfies the supplementary
condition.

0 = l(ξ + τξ′) = |ξ|2 + 2τξiξ′i + τ2|ξ′|2 (57)

implies
τ± = (− cos θ ± i sin θ)|ξ′|−1|ξ| (58)

where |ξ|2 = ξiξi and ξiξ′i = cos θ|ξ||ξ′|. That is, we have only one root with
positive imaginary part.

Example 4 (Stokes system). This example was taken from [28]. The follow-
ing equations appear as the stationary linearized case of the Navier-Stokes
equations (see for example [34]) for the velocity ui and the pressure p of the
fluid

∆ui − ∂ip = 0, ∂iui = 0 . (59)

The unknowns are ui, p, that is N = 4, and we will assume n = 3. Then, in
the matrix notation we have





∆ 0 0 −∂1

0 ∆ 0 −∂2

0 0 ∆ −∂3

∂1 ∂2 ∂3 0









u1

u2

u3

p



 = 0 . (60)

It is clear that the system is not classically elliptic. Take t1 = t2 = t3 = 2,
t4 = 1 and s1 = s2 = s3 = 0, s4 = −1. Then the symbol is
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lij =





|ξ|2 0 0 −ξ1
0 |ξ|2 0 −ξ2
0 0 |ξ|2 −ξ3
ξ1 ξ2 ξ3 0



 , (61)

and we have
l = |ξ|6, m = 3 . (62)

Then, the system is elliptic. Another possible choice for the weights is the
following: si = ti, with t1 = t2 = t3 = 1 and t4 = 0.

Example 5 (Cauchy-Riemann equation). We write the Cauchy-Riemann
equation L(u) = ∂z̄u in terms of the real variables z = x+ iy,

L(u) =
1
2

(∂xu+ i∂yu) . (63)

We have n = 2, N = 1. The symbol l = ξ1 + iξ2 satisfies

l(ξ) �= 0 for all real ξ �= 0 , (64)

hence the system is elliptic with m = 1/2. However, it does not satisfy the
supplementary condition because 2m = 1 is not an even number.

Example 6. Consider the following operator in R
3, acting on three-vectors ui,

Liju
j = ∂j(Eu)ij , (65)

where
(Eu)ij = 2µ∂(iuj) + λδij∂

kuk , (66)

and µ, λ are constants. Since in this case we have N = n = 3 we will use the
same index notation for the index in the vectors u and in the coordinates of
R

3.
The system (65) appears in elasticity (see, for example, [20]). It also ap-

pears in General Relativity related to gauge conditions like the minimal dis-
tortion gauge (see [33]) and in the constraint equations (see [39]), usually
with the choice µ = 1, λ = −2/3 which makes (66) trace-free.

From (65) we deduce

Liju
j = ((µ+ λ)∂i∂j + µδij∆)uj , (67)

in the matrix notation we have (λ′ = µ+ λ)

Liju
j ≡




λ′∂2

1 + µ∆ λ′∂2∂1 λ′∂1∂3

λ′∂1∂3 λ′∂2
2 + µ∆ λ′∂1∂3

λ′∂1∂3 λ′∂1∂3 λ′∂2
3 + µ∆








u1

u2

u3



 . (68)

Take si = ti = 1, the symbol is given by
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lij(ξ) = λ′ξiξj + µδijξ
kξk , (69)

and
l = µ2(2µ+ λ)|ξ|6, m = 3 . (70)

The operator is (classically) elliptic for µ > 0, 2µ+ λ > 0. It is also strongly
elliptic

lijη
iη̄j = (λ+ µ)(ηiξi)(η̄iξi) + µξkξkηiη̄

i ≥ εξkξkηiη̄
i , (71)

where ε = min{µ, 2µ+ λ}.

Example 7 (Einstein constraint equations). There exist different ways of re-
ducing the Einstein constraint equations to an elliptic system (see, for exam-
ple, the recent review [4]). In the standard approach the principal part of the
system is formed with the Laplace operator on a Riemannian manifold given
in Example 2 and the operator that has been discussed in Example 6.

A particular interesting example is the one that has been recently used
in [6] and [7] to construct new kinds of solutions. This system is not elliptic
in the classical sense but it satisfies definition 1 for appropriate weights (see
these references for details).

Example 8 (Witten equation). The Witten equation ∂AA′uA = 0 (in the
spinorial notation) plays an important role in the positive mass theorem of
General Relativity (cf. [37]). Solutions of this equation have been analyzed
in [29] and [26].

In the matrix notation (N = 2, and we will assume n = 3) this system is
given by (

∂3 ∂1 + i∂2

∂1 − i∂2 −∂3

)(
u1

u2

)
= 0 . (72)

The principal part, with weights t1 = t2 = 1, s1 = s2 = 0, is given by

lνµ(x, ξ) =
(

ξ3 ξ1 + iξ2
ξ1 − iξ2 −ξ3

)
, l = −(ξ23 + ξ22 + ξ21), m = 1 . (73)

Then, the system is elliptic.

3.2 Definition of Elliptic Boundary Conditions

For the operator Lµν defined in (45) we will consider boundary conditions of
the following form

B(x, ∂)lνu
ν = 0, l = 1, . . . ,m; ν = 1, . . . , N ; (74)

where B(x, ∂)lν are polynomial in ∂ and m is given by (48). The order of
the boundary operators, like those of the operators in (45), depends on two
systems of integer weights, in this case the system tν already attached to the
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dependent variable and a new system rl attached to each boundary condition
such that

deg(Blν) ≤ rl + tν . (75)

Note that rl can be negative and also the order of the derivatives in the
boundary conditions can be higher than in the operator. The principal part
blν of the boundary operator consists of the terms in Blν which are exactly
of order rl + tν .

For a given operator L, we would like to know for which boundary opera-
tors B the solutions of the corresponding boundary-value problem will satisfy
(i)–(ii). The answer to this question is given by the following definition, as
we will see in the next section.

Let x0 a point on ∂Ω and let ni the outer normal to Ω. We consider the
constant coefficient problem

lµν(x0, ∂)uν = 0 , (76)
blν(x0, ∂)uν = 0 , (77)

on the half plane (xi − xi
0) · ni < 0 with boundary (xi − xi

0)ni = 0.

Definition 4 (Complementing Condition). We say that the complement-
ing condition holds at x0 if there are no nontrivial solutions of (76)–(77) of
the following form:

uν(x) = vν(η)eiξj(x
j−xj

0) (78)

where ξ is a any nonzero, real, vector which satisfies ξini = 0, v(η) tends
to zero exponentially as η → −∞ and the coordinate η is defined by η =
(xj − xj

0)nj.

In the literature, these conditions are also called Lopatinski-Shapiro condi-
tions or covering conditions (see [2] and [38]). Let us study some examples
of boundary conditions.

Example 9 (Boundary conditions for the Laplace equation). Consider solu-
tions of the form (78) for the Laplace equation ∆u = 0. We chose coordinates
in R

n such that η = xn, ni = δi
n. Then, all the solutions of this form are given

by
u = eiξixie±|ξ|xn , (79)

where ξ satisfies ξn = 0.
We consider different boundary conditions on the plane xn = 0. For the

Dirichlet condition u(xn = 0) = 0 we get

u = eiξixi = 0 . (80)

Since this is not possible there exists no solution of this form which satisfies
the Dirichlet condition. Hence, the Dirichlet boundary condition satisfies the
complementing condition.



130 S. Dain

For the Neumann condition we have ∂xn
u = 0 at xn = 0, this implies

ξ = 0 and then the solution will not decay at infinity. Hence, the Neumann
condition satisfies also the complementing condition.

Take the oblique derivative boundary condition βi∂iu = 0 at xn = 0. This
implies

i(βiξ
i) = 0, βn|ξ| = 0 . (81)

If βn �= 0, then |ξ| = 0, and the complementing condition is satisfied. This was
the case studied in Sect. 2. On the other hand, if βn = 0 (like in Example 1),
then the complementing condition is not satisfied since we can always chose
a vector ξ such that βiξ

i = 0 and we will get solutions of the form (78).
Consider now the following interesting example studied in [15]. At xn = 0

we impose the boundary conditions

δu = 0 , (82)

where
δu = ∂2

1u+ · · · + ∂2
n−1u , (83)

is the Laplacian in n − 1 dimension. From (82) we deduce the |ξ|2 = 0 and
then it satisfies the complementing conditions. It is also clear that δku = 0
where k, is an arbitrary natural number, satisfies the complementing condi-
tion. Note that in this cases the boundary operator has derivatives of higher
order than the Laplace operator. On a Riemannian manifold, these condi-
tions can be written in geometric form where δ is the intrinsic Laplacian on
the boundary. Another interesting condition which also satisfies the comple-
menting condition is the following

δu− ni∂iu = 0 . (84)

In this case, integrating by parts, it is easy to show that the only solutions
of the homogeneous problem are the constants

0 =
∫

Ω

u∆u =
∮

∂Ω

uni∂iu−
∫

Ω

∂iu∂
iu (85)

=
∮

∂Ω

uδu−
∫

Ω

∂iu∂
iu (86)

= −
∮

∂Ω

|du|2 −
∫

Ω

∂iu∂
iu , (87)

where du denotes the gradient intrinsic to the boundary.

Example 10. Consider the operator discussed in Example 6. Integrating by
parts we get

B(u, v) = −
∫

Ω

viLiju
j +
∮

∂Ω

(Eu)ijn
ivj (88)

where
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B(u, v) =
∫

Ω

(Eu)ij∂ivj . (89)

We can write the integrand in B(u, v) in the following form

(Eu)ij∂ivj =
µ

2
(Lu)ij (Lv)ij +

(
λ+

2
3
µ

)
∂ku

k∂lv
l , (90)

where (Lu)ij is the trace-free part of ∂(iuj), that is

(Lu)ij = 2∂(iuj) −
2
3
δij∂ku

k . (91)

Note that B is symmetric, B(u, v) = B(v, u). Using this and equation (88)
we get the following Green formula:

∫

Ω

viLiju
j − uiLijv

j =
∮

∂Ω

(Eu)ijn
ivj − (Ev)ijn

iuj . (92)

This is analogous to the Green formula for second order equation (23). For
simplicity we have not included terms in non-divergence form in the operator.
That is why we have L = Lt and B = Bt in (92). These extra terms can be
handled in the same way as in Sect. 2.

The boundary integral in the Green formula (92) suggests that two natural
boundary conditions are that of Dirichlet type

ui = 0 on ∂Ω , (93)

and the analog to the Neumann boundary condition

(Eu)ijn
j = 0 on ∂Ω . (94)

We want to prove that these boundary conditions satisfy the complementing
condition. We will assume that µ > 0 and 2µ+λ > 0, that is, the operator is
elliptic as we have seen in Example 6. We will make also an extra assumption:
3λ + 2µ ≥ 0; this implies that the integrand (90) is positive. Moreover, if
3λ+ 2µ > 0,

B(u, u) = 0 ⇐⇒ ∂(iuj) = 0 , (95)

that is u is a Killing vector. If 3λ+ 2µ = 0, then

B(u, u) = 0 ⇐⇒ (Lu)ij = 0 , (96)

then u is a conformal Killing vector. In flat space, we know explicitly all
the Killing and conformal Killing vectors. Hence, we have a characterization
of the null spaces for these boundary conditions. The Killing and conformal
Killing vectors are the analog of the constants for the Neumann problem for
the Laplace equation.
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Assume we have a solution u of the form (78). Choose Cartesian coordi-
nates such that η = x3. Let L1 = 2π/ξ1 and L2 = 2π/ξ2. Take as domain
the infinite cubic region x3 ≥ 0, 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2. For this domain
we use equation (88) for u = v. We want to prove that, on this domain,
the boundary integral in (88) vanishes if we impose either (93) or (94). Us-
ing these boundary conditions we get that the integrand vanishes on the face
x3 = 0. The integrand also vanishes on the face x3 = ∞ because the solution,
by hypothesis, decays at infinity. On the other faces the integrand does not
vanish. However, because of the choice of L1 and L2, we have that the inte-
grand of opposite faces are identical. Then, the sum of the boundary integrals
vanishes because the normal is always outwards. We conclude that B(u, u)
should vanish. But there are no Killing or conformal Killing vectors which
decay to zero at infinity. Hence the complementing condition is satisfied.

Example 11 (Boundary conditions for the Stokes system). If we multiply
equations (59) by ui and integrate by parts we get

0 = −
∫

Ω

∂kui∂
kui +

∮
nk(ui∂kui − ukp) . (97)

Using this equation and a similar argument as in the previous example it is
possible to show that the boundary conditions

ui = 0 on ∂Ω , (98)

and p unprescribed, satisfy the complementing condition (see for example
[28]).

Example 12 (Dirichlet boundary conditions for strongly elliptic systems). As-
sume that the system is strongly elliptic; this implies si = ti = t′i ≥ 0. The
Dirichlet boundary conditions on ∂Ω are given by

(ni∂i)quj = 0, q = 0, . . . , t′j − 1, j = 1, . . . , N ; (99)

when t′j = 0, uj goes unprescribed.
It can be proved that for every strongly elliptic system, the Dirichlet

conditions (99) satisfy the complementing condition (see [2]).
In the case of equations (N = 1) of order 2m (t1 = m) these conditions

reduce to
(ni∂i)qu = 0, q = 0, . . . ,m− 1 . (100)

In particular, for second order equations (m = 1) we have u = 0 at the
boundary. That is, we recover the familiar Dirichlet condition studied in
Sects. 1 and 2. In Example 6 we have t′i = 1, then q = 0 and the Dirichlet
conditions is just

uj = 0 on ∂Ω . (101)

As an example of a higher order equation, we have the biharmonic equa-
tion
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∆∆u = f , (102)

the Dirichlet conditions are given by (N = 1, m = 2)

u = 0, ni∂iu = 0 on ∂Ω . (103)

Example 13. In the following example (taken from [28]), the complementing
condition is not satisfied. Consider the following problem in R

2, where the
boundary is the line x2 = 0

∆∆u = 0 on Ω ∆u = ∂2∆u = 0 on ∂Ω . (104)

For every ξ ∈ R the function

u(x, y) = eiξx1−|ξ|x2 (105)

is a solution.

Example 14. We have seen that for strongly elliptic systems the Dirichlet
boundary conditions satisfy the complementing condition. This is not true
for general elliptic systems. In the following example (discussed in [25]) we
show that there are elliptic systems for which the Dirichlet problem is not
well defined.

Consider the system (N = n = 2)
(
∂2
1 − ∂2

2 −2∂1∂2

2∂1∂2 ∂2
1 − ∂2

2

)(
u1

u2

)
= 0 . (106)

The symbol is given by

lij =
(
ξ21 − ξ22 −2ξ1ξ2
2ξ1ξ2 ξ21 − ξ22

)
, l = (ξ21 + ξ22)2 . (107)

Then, the system is elliptic in the classical sense. This system can be written
in the complex form, z = x1 + ix2, w = u1 + iu2, as

∂2
z̄w ≡ 1

4
(∂1 + i∂2)2w = 0 , (108)

for which the general solution is clearly

w = f(z) + z̄g(z) , (109)

where f and g are arbitrary functions of z. We observe that all solutions of
the form

w = f(z)(1 − zz̄) on |z| ≤ 1 , (110)

with arbitrary analytic f , vanish on the boundary of the unit disk. Thus, the
Dirichlet boundary conditions do not characterize the solutions: there exist
infinitely many solutions with identical boundary values.
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Example 15 (Boundary conditions for the Witten equation). In the Witten
equation studied in Example 8 we have m = 1, that is, we can only impose
one boundary condition. Consider the following boundary condition:

u1 = 0 on ∂Ω (111)

and u2 goes unprescribed. This condition has been studied in [31] as an
inner boundary condition for black holes in the positive mass theorem. We
want to prove that it satisfies the complementing condition. We can explicitly
calculate all the solutions of the form (78) of the equations (72)

uν = eξixivν(x3), vν = Aνe|ξ|x3 , (112)

where Aν are constants such that A2/A1 = (iξ1 + ξ2)|ξ|−1 and we choose
coordinates such that η = x3, ξ3 = 0. There is no solution of this form that
satisfies u1(x3 = 0) = 0 and then the complementing condition follows.

Example 16 (Stationary solutions of Einstein equations). In the presence of
a timelike symmetry, the Einstein equations can be reduced to an elliptic
system. Moreover, the inner boundary conditions satisfy the complementing
condition. This result was proved in [30] and it was used to prove an existence
result for the non linear problem. See also [23] for a different kind of boundary
conditions for the static case.

3.3 Results

In order to present a general result for properly elliptic systems with boundary
conditions that satisfy the complementing condition we need to reformulate
in a more precise way properties (i)–(ii). For a given operator L and boundary
operator B we consider the operator A defined as A(u) = (L(u), B(u)). This
operator will act on appropriate Hilbert spaces H1 and H2, A : H1 → H2. In
analogous way to (26) we define the null space N (A) as

N (A) = {u ∈ H1 : A(u) = 0} . (113)

The range of A is defined by

R(A) = {w ∈ H2 : ∃u ∈ H1, A(u) = w} , (114)

and the complement of the range is given by

R⊥(A) = {w ∈ H2 : (Au,w)H2 = 0 for all u ∈ H1} , (115)

where (·, ·) denotes the Hilbert space scalar product.
We can write now properties (i)–(ii) as follows.

(i) N(A) has finite dimension.
(ii) R⊥(A) has finite dimension.
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An operator which satisfies (i)–(ii) is called a Fredholm operator. (We have
assumed that A is bounded, otherwise in (ii) we need to impose that R(A)
is closed, see [18] and [16]).

We have the following general result. (We only sketch the statement, for
details and proofs see [16,17] and also [38].)

Theorem 6. If the system L is properly elliptic in Ω̄ and the boundary con-
ditions satisfy the complementing condition for every point of ∂Ω, then the
operator A(u) = (L(u), B(u)) is Fredholm.

We have seen that the dimension of N (and hence uniqueness) is not in-
variant if we add lower order terms to the operator. One of the consequence of
Theorem 6 is the existence of an invariant for elliptic problems: the Fredholm
index. This number is defined as

I = dimN (A) − dimR⊥(A) . (116)

It can be proved that the index I is stable under perturbation, in particular
it does not depend on the lower order terms.

In Sect. 2 we have used the Green formula to construct the formal adjoint
operator Lt and its corresponding boundary operator Bt. In this case we can
define At(u) = (Lt(u), Bt(u)), and it can be proved1 that N(At) = R⊥(A).
That is, the boundary-value problems considered in Theorem 2 and 3 have
I = 0. In fact these theorems also show that the index does not depend on
the lower order terms in this particular case.

Boundary conditions which come from a Green formula are called normal
boundary conditions. The advantage of them is that we have a characteri-
zation of R⊥(A) through the formal adjoint problem, and then we can in
principle compute the conditions that the sources should satisfy in order to
have a solution. General results for normal boundary conditions for higher
order elliptic equations can be found in [19,32]. Since these boundary condi-
tions come from an integration by parts, the order of the boundary operators
will be always less than that of the operator itself. We have seen that this
is not necessarily the case for general elliptic boundary conditions that sat-
isfy the complementing condition. For the general case, we will not have a
characterization of R⊥(A).

We have seen that the Dirichlet boundary conditions satisfy the comple-
menting condition for strongly elliptic systems. Using this fact, general exis-
tence results for the Dirichlet problem can be proved (see [24]). Moreover, it
can be shown that the index is always zero in this case.

Finally, we want to present an existence result for the operator considered
in Example 6 that can be deduced from the general Theorem 6 (see [36]).

1It is important to note that for any bounded (or unbounded with dense range)
operator A we can define the Hilbert adjoint A′. This is not related, in general,
with the formal adjoint At. However, when we have a Green formula, it is possible
to prove that in fact At = A′ (see Theorem 8.4 of [5, 19] and also [35]).
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In this case, we have a Green formula and then we have normal boundary
conditions. The following two theorems are analogous to Theorem 2 and 3.

Theorem 7. Let Lij be given by (65) with µ ≥ 0, 2µ+ λ ≥ 0, 2µ+ 3λ ≥ 0.
Then, for every smooth f j and gi, there exists a unique, smooth, solution ui

of the Dirichlet problem

Liju
i = f j on Ω, ui = gi on ∂Ω . (117)

We have seen that all solutions of the homogeneous problem satisfy
(Ev)ij = 0, that is v is a Killing or a conformal Killing vector. Uniqueness
in this theorem follows because there exists no Killing or conformal Killing
vector which vanishes at the boundary.

Theorem 8. Let Lij be given by (65) with µ ≥ 0, 2µ+ λ ≥ 0, 2µ+ 3λ ≥ 0.
Consider the boundary-value problem

Liju
i = f j on Ω, (Eu)iju

i = 0 on ∂Ω . (118)

This problem has a solution if and only if
∫

Ω

fiv
i = 0 for all vi such that Evij = 0 . (119)

If u1 and u2 are two different solutions, then the difference v = u1 − u2

satisfies (Ev)ij = 0.

In the case of the Einstein constraint equations, the previous theorems can be
used to prove existence of solutions of the momentum constraint (see [39]).
In this case the physical quantity is the second fundamental form Kij which
is given by

Kij = Qij − (Eu)ij , (120)

where Q is an (essentially) arbitrary tensor. Then, as in the case of the Neu-
mann problem for the Laplace equation, the lack of uniqueness in Theorem
8 will not affect Kij .

4 Final Comments

In order to check if a system of equations is elliptic, we should first prove
that the principal part of the operator satisfies definitions 1 and 2. If the sys-
tem is non linear, we should consider the corresponding linearized problem.
Then we should prove that the boundary operators satisfy the complementing
condition (definition 4). This can be complicated. There exist equivalent for-
mulations of this condition (see for example [38]), some of them can be more
suitable for specific problems. It is also important to know if the boundary
conditions come from a Green formula (normal boundary conditions). The
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Green formula can be used to prove that the complementing condition holds
(as we have seen in the examples). Moreover, for the case of higher order
equations there exist general results that can be used (see [19]).

We have only discussed linear elliptic systems. In the non linear case, there
are no general existence results like Theorem 6. For non linear second order
equations a good reference is [14] and for non linear systems [13] and [12].
A related issue that was not discussed here is regularity. We have assumed
that the functions and the boundary are smooth. Regularity properties are
crucial for non linear systems, see [13,14] and [12] and references there.

In Sect. 2 we have followed [11]. Good references for this section are
also [10,14] and [22]. For Sect. 3, an introductory book is [28]; more advanced
material can be found in [35] and [3]; for a complete discussion see [15, 16]
and [38].
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Mathematical Properties of Cosmological
Models with Accelerated Expansion
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Abstract. An introduction to solutions of the Einstein equations defining cos-
mological models with accelerated expansion is given. Connections between math-
ematical and physical issues are explored. Theorems which have been proved for
solutions with positive cosmological constant or nonlinear scalar fields are reviewed.
Some remarks are made on more exotic models such as the Chaplygin gas, tachyons
and k-essence.

1 Introduction

Recent cosmological observations indicate that the expansion of the universe
is accelerating and this has led to a great deal of theoretical activity. Models
of accelerated cosmological expansion also raise a variety of interesting math-
ematical questions. The purpose of the following is to first give a pedagogical
introduction to this subject suitable for the mathematically inclined reader
and then to present an overview of some of the mathematical results which
have been obtained up to now and the many challenges which remain.

The simplest class of cosmological models consists of those with the high-
est symmetry, i.e. those which are homogeneous and isotropic. The underlying
spacetimes are the FLRW (Friedmann-Lemâıtre–Robertson–Walker) models.
A further simplification can be achieved by assuming that the metric of the
slices of constant time is flat. The spacetime metric can be written in the
form:

− dt2 + a2(t)(dx2 + dy2 + dz2) (1)

for a suitable scale factor a(t). These are the models most frequently used
in the literature due both to their simplicity and the fact that spatially flat
FLRW models appear to give a good description of our universe.

The physical interpretation of a(t) is that if two typical galaxies are a
distance D(t) apart at time t then D(t2)/D(t1) = a(t2)/a(t1) for any times
t1 and t2. The statement that the universe is expanding corresponds to the
condition that the time derivative ȧ is positive. Accelerated expansion means
that the second derivative ä is positive.

The function a(t) should be determined by the field equations for gravity
and in the following we always take the Einstein equations for this purpose.

A.D. Rendall: Mathematical Properties of Cosmological Models with Accelerated Expansion,
Lect. Notes Phys. 692, 141–155 (2006)
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142 A.D. Rendall

There are two choices to be made. The one concerns the cosmological constant
Λ. The other concerns the description of the matter content of spacetime.
This means choosing the variables which describe the matter, the equations
of motion these are to satisfy and the definition of the energy-momentum
tensor as a function of the matter fields and the spacetime metric. Under
the assumption of FLRW symmetry this will lead to an evolution equation
for a(t). The easiest way to produce models with accelerated expansion is
to choose a positive cosmological constant (Λ > 0). A more sophisticated
alternative is to choose Λ = 0 but to include a suitable nonlinear scalar field
among the matter fields.

The rest of this article is structured as follows. It starts with a brief
introduction to some physical ideas relevant to accelerated cosmological ex-
pansion. Then mathematical theorems about spacetimes with positive cos-
mological constant motivated by the physics are described. After that these
results are compared with the original physical motivation. Once the case
of a positive cosmological constant has been described it is discussed why
it might be good to replace the cosmological constant by a nonlinear scalar
field and what changes when that is done. Finally, some future research di-
rections involving more general models for cosmic acceleration are indicated.
In particular, comments are made on the Chaplygin gas and the tachyon
condensate.

2 Physical Background

Accelerated expansion plays a role in cosmology in two different regimes. The
first is the very early universe while the second is the period between the de-
coupling of the microwave background radiation and the present. Accelerated
expansion in the early universe is associated with the name inflation which
was introduced by Guth [10]. The paper [10] was extremely important in
popularizing the concept of inflation. A first-hand account of the historical
development of the idea of inflation can be found in [11] where there is in-
formation on related earlier work of other authors such as Starobinsky ([11],
p. 229).

One of the attractive features of inflation is that it is claimed to solve
certain ‘problems’ in cosmology. It is justified to ask in which sense these can
really be considered as problems but these philosophical questions will not
be entered into in the following. Among these issues are

– homogeneity and isotropy,
– flatness problem,
– horizon problem.

The first issue is that, after averaging on a suitable scale, our universe is ho-
mogeneous and isotropic. There are two basically different kinds of possible
reason for this. One is that it was always homogeneous and isotropic. This



Mathematical Properties of Cosmological Models 143

possibility is perceived by many as unsatisfactory. The alternative is that
the universe was originally anisotropic and inhomogeneous and that some
dynamical mechanism later made it homogeneous and isotropic. In the sec-
ond explanation this mechanism must be found. The second issue is that it
appears that the curvature of space on cosmological scales is very small to-
day. Within a standard FLRW model this implies that it was even smaller at
decoupling. It is often perceived that this smallness requires an explanation.
The third issue is that the temperature of the microwave background is es-
sentially the same at points such that there would have been no time to send
a signal to both from some common point since the big bang in a standard
Friedmann model (without accelerated expansion). Can this be explained?
Inflation has something to say about all three issues, as will be shown later.

Accelerated cosmological expansion at the present epoque is a relatively
recent discovery, dating from the late 1990’s. There is now very strong ob-
servational evidence, which continues to accumulate, that the velocity of re-
cession of distant galaxies is accelerating. On the theoretical side this phe-
nomenon is associated with the names dark energy and quintessence. The
latter term was introduced by Caldwell, Dave and Steinhardt [5]. There are
a number of different lines of evidence for cosmic acceleration at times after
decoupling which include

– supernovae of type Ia,
– microwave background fluctuations,
– gravitational lensing,
– galaxy clustering.

Here only the supernova data will be discussed. A supernova of type Ia
is an exploding star which is bright enough to be visible at cosmological dis-
tances. The characteristics of an event of this type which can in principle be
observed are the red shift, the light curve (observed brightness as a function
of time) and the spectrum. In recent years it has become possible to observe
these data in practice for a useful sample of objects. The light curve and
spectrum provide the information needed to identify a supernova as being
of type Ia. The advantage of this is that type Ia supernovae have universal
properties which allow their intrinsic brightness to be determined. In a first
approximation, all of these objects have the same intrinsic brightness at the
maximum of their light curves. The number of objects of this type observed
so far is just over 150. The projected space mission SNAP (Supernova Accel-
eration Probe) is planned to observe about 2000 per year. The way in which
data can be compared with theoretical models will be outlined in Sect. 6.

3 Mathematical Developments

It has been known for a long time that spacetimes with a positive cosmo-
logical constant have a tendency to isotropize at late times, a circumstance
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associated with the name ‘cosmic no hair theorem’. In [23] Starobinsky wrote
down formal expansions for the late-time behaviour of spacetimes with posi-
tive cosmological constant. He studied the case where the matter is described
by a perfect fluid with linear equation of state p = (γ − 1)ρ, where γ is a
constant belonging to the interval [1, 2). He also discussed the vacuum case
which, as it turns out, gives the leading order terms in the expansion of the
geometry for the case with fluid as well. In a certain sense the solutions all
look like the de Sitter solution at late times. This will be made more precise
below.

It will be convenient in the following to write the de Sitter solution in the
form

− dt2 + e2Ht(dx2 + dy2 + dz2) (2)

where H =
√
Λ/3. These coordinates only cover half of de Sitter space but

this is no disadvantage in the following where the subject of interest is the
limit t → ∞. The expansions of [23] are expressed in terms of Gauss coordi-
nates. In other words g00 = −1 and g0a = 0 where Latin indices are spatial
indices. In the vacuum case the expansion of the spatial metric is

gab(t, x) = e2Ht(g0
ab(x) + g2

ab(x)e−2Ht + g3
ab(x)e−3Ht + · · · ) . (3)

The fact that the coefficient of eHt vanishes is a result of the analysis. Putting
g0

ab = δab and setting all the other coefficients to zero gives the de Sitter
solution.

In [23] it is not specified how this infinite series is to be interpreted math-
ematically but it is natural to interpret it as a formal series. This means that
there is no assertion that the series converges or even that it is asymptotic.
Recall that a series as above is called asymptotic if for each positive integer
M there is a positive constant CM such that

∣∣∣∣∣gab −
M∑

0

gm
abe

(2−m)Ht

∣∣∣∣∣ ≤ CMe(1−M)Ht . (4)

In other words, the sum of any finite truncation of the series differs from
the quantity to which it is asymptotic by a remainder of order equal to the
next term beyond the truncation. A convergent series is asymptotic but not
necessarily conversely. At this point in the discussion it is not even claimed
that the above series is asymptotic. It is just a formal expression which solves
the Einstein equations in the sense that if we substitute it into the Einstein
equations and manipulate the infinite series according to rather obvious rules
all terms cancel.

In [20] a theorem was proved concerning the above formal series. To for-
mulate it, let Aab be a three-dimensional Riemannian metric and Bab a sym-
metric tensor which is transverse traceless with respect to Aab. This means
that AabBab = 0 and ∇aBab = 0 where the covariant derivative is that asso-
ciated to the metric Aab. Given Aab and Bab of this form which are smooth
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(C∞) there exists a unique series of the above form satisfying the vacuum
Einstein equations with Λ > 0 with smooth coefficients gm

ab which satisfies
the conditions g0

ab = Aab and g3
ab = Bab. Notice that on the basis of function

counting these solutions are as general as the general solution of the vacuum
Einstein equations. For the general solution can be specified by giving the
induced metric and the second fundamental form on a spacelike hypersur-
face and these must satisfy one scalar and one vector equation. Thus in both
cases we have the same type of data and the same number of constraints
which they have to satisfy. In the present case the constraints are simpler
than in the ordinary Cauchy problem. In [20] a corresponding theorem was
also proved for the case of the Einstein equations coupled to a perfect fluid
with a linear equation of state. The most difficult part of the proof is to show
that the Einstein constraint equations are satisfied as a consequence of the
‘constraints at infinity’, i.e. the tranverse traceless nature of Bab with respect
to Aab.

It is desirable to extend the above results about formal power series and
function counting to show that there exists a large class of solutions which
have asymptotic expansions of the above form and that these are general in
the sense that they include all solutions arising from a non-empty open set
of initial data on a Cauchy surface. One place to look for such an open set
is as an open neighbourhood of standard data for the de Sitter solution on a
hypersurface t =const. In the vacuum case a result of this kind was proved
in [20] using results of Friedrich [6,7] on the stability of de Sitter space. The
corresponding result with a perfect fluid, which is what would be desirable for
cosmology, is still open. The proofs in the vacuum case use the conformal field
equations. The results can be extended in some cases to conformally invariant
matter fields but for other matter fields, including most fluids, it is not at
all clear that the method could work. If the metric is conformally rescaled as
in the conformal method either the rescaled metric or the conformal factor
will for most fluids be non-smooth, involving non-integral powers of the time
coordinate.

Another possible direction in which the existing results could be extended
is to other spacetime dimensions. In the context of formal power series of the
vacuum Einstein equations with Λ > 0 this has been done in [20]. The result
is the series:

gab = e2Ht

(
g0

ab +
∞∑

m=1

Lm∑

l=0

(gab)m−2,lt
le−mHt

)
(5)

where H =
√

2Λ/n(n− 1) in spatial dimension n. For each m the quantity
Lm is a finite integer. The terms with l > 0 will be refererred to as ‘loga-
rithmic terms’ since t is logarithmic in the expansion parameter eHt. Again
it is possible to prescribe two quantities Aab and Bab which this time have
to satisfy an inhomogeneous version of the transverse traceless condition in
general. The inhomogeneity is determined by Aab. The prescribed coefficients
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are g0
ab = Aab and (gab)n−2,0 = Bab. In general logarithmic terms are required

to get a consistent formal expansion. They can only be avoided if n is odd,
n = 2 or Aab satisfies some strong restrictions.

At the present time the results on formal asymptotic expansions for higher
dimensional vacuum spacetimes have not been extended to existence theo-
rems for all solutions corresponding to a non-empty open set of initial data
on a regular Cauchy surface. It has, however, been proved that there exists
a very large class of solutions of the Einstein equations with asymptotic ex-
pansions as above. Tensors Aab and Bab satisfying the constraints at infinity
can be prescribed arbitrarily under the assumption that they are analytic
(Cω). This was proved in [20] using Fuchsian techniques. The generality of
the solutions is judged using function counting. These results can probably
be extended to fluids with linear equation of state in 3 + 1 dimensions but
this has not been worked out.

The above results require no symmetry assumptions. Under the assump-
tion of spatial homogeneity much more is known. A theorem of Wald [27]
shows that for spacetimes of Bianchi types I-VIII with positive cosmological
constant and matter satisfying the dominant and strong energy conditions
solutions which exist globally in the future have certain asymptotic properties
as t → ∞. This implies that the asymptotics of these spacetimes have some of
the properties which follow from the asymptotic expansions discussed above.
To go further the matter model must be specified. For matter described by
the Vlasov equation global existence and more refined asymptotics have been
proved by Lee [16]. When the matter model is a perfect fluid with linear equa-
tion of state similar results have been proved in [21]. These results confirm
many of the features expected from the formal asymptotic expansions. There
is also a class of highly symmetric inhomogeneous spacetimes with Λ > 0 for
which global existence and asymptotic properties has been proved for large
initial data. These are solutions of the Einstein-Vlasov system with plane or
hyperbolic symmetry [24,25].

4 Mathematics and Physics Compared

In all the classes of spacetimes with a positive cosmological constant which
expand forever the available mathematical results all indicate isotropization
at late times. To see the reason for this, introduce the second fundamental
form of the hypersurfaces t =const., which in Gauss coordinates is given
by kab = −(1/2)∂tgab. It turns out that the tracefree part of kab becomes
negligible in comparison with its trace trk, which is the mean curvature.
Equivalently each eigenvalue of the second fundamental form divided by the
mean curvature tends to 1/3 as t → ∞. In the FLRW models these values
are exactly equal to 1/3. In the terminology more common in general rela-
tivity the ratio of shear to expansion tends to zero. This is the meaning of
isotropization.
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At first sight it seems that the spacetime does not become homogeneous at
late times, since the coefficient g0

ab of the leading term in the expansion is not
homogeneous. There is, however, a more subtle sense in which it does become
homogeneous. Globally in space there is certainly no uniform convergence to
a homogeneous metric. This is also the case for spacetime regions of constant
coordinate size in the Gaussian coordinates which have been used. On a
spatial region of fixed physical size, however, things look different. A region
of this kind has a coordinate size which goes to zero exponentially. Since any
Riemannian metric can be approximated arbitrarily well by a flat metric on
a sufficiently small region it follows that on a region of fixed physical size the
metric converges uniformly and exponentially to the de Sitter metric. In this
sense the spacetime does become homogeneous.

Consider next the flatness problem. If the metric has an asymptotic ex-
pansion of the form given in the last section then it can be computed directly
that the scalar curvature of the spatial metric converges to zero exponen-
tially as t → ∞ and this is what we want to solve the flatness problem. In
fact even more can be said. The curvature invariants RabR

ab and RabcdR
abcd

associated with the three-dimensional metric also decay exponentially. Thus
it is not just the scalar curvature which decays; the entire curvature of the
spatial metric decays just as fast. It should be noted that although the results
of [24] and [25] give a lot of information on the spacetimes to which they are
applicable, they are apparently not strong enough to give curvature decay.

It is not so easy to address the horizon problem by a simple and precise
mathematical statement. What can be said is the following. A positive cos-
mological constant leads to solutions of the Einstein equations which look
like de Sitter space on a long time interval and a long time interval in de
Sitter space does not suffer from the horizon problem.

5 Scalar Fields

As already mentioned in the introduction, an alternative to a positive cosmo-
logical constant as a mechanism for producing solutions of the Einstein equa-
tions with accelerated expansion is a suitable nonlinear scalar field. Consider
a minimally coupled scalar field in a spacetime with vanishing cosmological
constant. The energy-momentum tensor of the scalar field is of the form

Tαβ = ∇αφ∇βφ−
[
1
2
∇γφ∇γφ+ V (φ)

]
gαβ (6)

where V is a smooth non-negative function, the potential. To see the connec-
tion with a cosmological constant, consider the spatially homogeneous case.
Then the energy density is given by ρ = T00 = φ̇2/2 + V (φ) while the pres-
sure is given by p = T11 = φ̇2/2 − V (φ). There are now different possible
regimes. If the kinetic energy is much larger than the potential energy on
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a certain time interval then on that interval the energy density is approxi-
mately equal to the pressure. Thus in a certain loose sense the matter can
be approximated by a stiff fluid, which satisfies p = ρ. If the kinetic and
potential energies are approximately equal on a certain time interval then
the pressure is approximately zero there. On that interval the matter can be
approximated by dust, which satisfies p = 0. Finally, if the potential energy
is much larger than the kinetic energy then the pressure is approximately
equal to minus the energy density. It is the third case which is related to
a cosmological constant. If we think of the cosmological constant as a mat-
ter field whose energy-momentum tensor is proportional to the metric then
this fictitious matter satisfies p = −ρ. In particular, the pressure is negative
and comparable in size to the energy density and this is what gives rise to
accelerated expansion.

The nature of the dynamics with a nonlinear scalar field depends crucially
on the potential V . A useful intuitive picture for guessing what happens
with a given potential is the ‘rolling’ picture. In any spatially homogeneous
spacetime the equation of motion for the scalar field is

φ̈− (trk)φ̇+ V ′(φ) = 0 (7)

This is similar to the equation of motion of a ball which rolls on the graph of
the function V with variable friction determined by the mean curvature trk.
Physical intuition then suggests that the ball should roll down the slope and
settle down in a local minimum of the potential. It turns out that accelerated
expansion eventually stops if the minimum value of the potential is zero and
that for that reason the case of a strictly positive minimum is mathematically
more tractable.

Depending on how the acceleration of the universe varies with time it may
or may not be consistent with the simplest model where there is a positive
cosmological constant and any other matter present satisfies the strong energy
condition and so cannot by itself cause acceleration. If the obervations are not
consistent with acceleration caused only by a cosmological constant then the
next simplest possibility is the nonlinear scalar field. Whether a cosmological
constant is enough to explain the observations does not yet seem to be settled
although there is some work on the problem in the literature. (See e.g. [1].)

There have been many suggestions for the form of the potential V in
the context of inflation or quintessence but there is no clear winner at the
moment. If there is a scalar field causing cosmological expansion then we
do not know what it is. In these circumstances it makes sense to study the
properties of large classes of potentials. In [21] the case of a potential with a
strictly positive minimum was discussed. For spacetimes containing a scalar
field of this type and ordinary matter satisfying the dominant and strong
energy conditions it was shown that there are rather direct generalizations of
Wald’s theorem [27] and the results of [16].

More specifically, it can be shown under weak assumptions that if the
potential is bounded below by a positive constant then V ′(φ) tends to zero
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as t → ∞. Either φ converges to a finite value which is a critical point of V
or φ tends to plus or minus infinity. If φ converges to a finite value and if
the corresponding critical point of V is a non-degenerate local minimum φ1

then the solution has asymptotics like that in Wald’s theorem, with V (φ1)
playing the role of an effective cosmological constant. The mean curvature
trk converges to a constant −3H1.

In [21] the statement was made that when the potential has a non-
degenerate positive minimum a solution for which the scalar field converges to
this minimum has no oscillations. This is misleading and should be replaced
by the statement that the deviation of the scalar field from the point where
the potential attains its minimum and the modulus of φ̇ decay exponentially
as t → ∞. This implies in particular that φ̇ is absolutely integrable. The
equation for u = (φ, φ̇) can be written in the form u̇ = Au + R(t)u where
A is a constant matrix and R(t) is a matrix-valued function which decays
exponentially. If β > 9H2

1/4 where β = V ′′(φ1) then the eigenvalues of A are
not real. For a generic solution there is an oscillation modulating the leading
order exponential decay of the scalar field.

A natural next step is to look at potentials which are strictly positive but
which are allowed to go to zero at infinity. The best-studied case is that of
power-law inflation. Analogues of Wald’s theorem for this case were obtained
in [14] and extended in [17]. The potential is of the form V = V0e

−κλφ

for a positive constant λ. Here κ is a constant which in geometrical units
(G = c = 1) satisfies κ2 = 8π. Accelerated expansion at late times is obtained
if λ <

√
2. If λ is greater than

√
2 then the expansion is decelerated at late

times. In the accelerated case the scale factor behaves like a power of t greater
than one at late times. When λ >

√
2 there are exact FLRW models where

the scale factor is proportional to a power of t which is less than one [12].
For inhomogeneous models there is just one interesting result. In [19]

formal series expansions for spacetimes with power-law inflation and matter
content given by a scalar field alone were written down. It would be interesting
to extend the results of [20] for a cosmological constant to this case. The
formal expansions are more complicated since they can include powers which
are any linear combination with integer coefficients of one and λ. This is
similar to the case of a perfect fluid where integer linear combinations of one
and γ occur. Note that there is at present no analogue of the results of [6]
and [7] known for the case of power-law inflation. It would also be interesting
to extend the results of [25] to the case of a nonlinear scalar field. A first
step in this direction is a local existence theorem for solutions of the Einstein
equations coupled to the Vlasov equation and a linear scalar field which was
obtained in [26].

If the potential is zero somewhere the dynamical behaviour becomes more
complicated. This is what happens in chaotic inflation. The model case is that
of a massive linear scalar field. There is accelerated expansion on some finite
time interval but it eventually stops, a process known as reheating. After
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this the scalar field behaves like dust. At late times φ̇ does not decay faster
than t−1 and so is not absolutely integrable. These conclusions are based on
heuristic arguments [3].

6 Relations Between Perfect Fluids and Scalar Fields

A type of matter model frequently used to produce accelerated expansion is
a perfect fluid which violates the strong energy condition. The equation of
state p = f(ρ) satisfies ρ + 3p < 0. In the simplest case of a linear equation
of state p = (γ − 1)ρ this corresponds to choosing γ < 2/3. Unfortunately
γ < 1 means that dp/dρ < 0 and so the speed of sound becomes imaginary.
As has been argued in [8] this suggests that for inhomogenous solutions the
initial value problem is ill-posed. The case of homogeneous spacetimes should
be thought of as a simple and important special case of the problem without
symmetry and if the model makes no mathematical sense without symmetry
it is suspect.

A solution to this difficulty is the observation that there is a certain
equivalence between a perfect fluid and a scalar field and that the scalar field
defines a model which is well-posed without symmetry restrictions. Consider
first the case of a linear equation of state with 0 < γ < 2/3 and no other
matter fields. Suppose that a spatially flat FLRW solution is given for a fluid
with this equation of state. We look for a potential such that the correspond-
ing nonlinear scalar field can reproduce the fluid solution. Using the equation
of state gives the relation φ̇2 = 2γ

2−γV . Differentiating this with respect to
time gives an equation relating φ̈ and V ′(φ). All terms in this equation have
a common factor φ̇. Because p �= ρ it follows that φ̇ �= 0 and this factor
can be cancelled. It follows that φ̈ = γ

2−γV
′(φ). The Hamiltonian constraint

implies that trk = −
√

48πV
(2−γ)2 . Putting all this information into the equation

of motion for the scalar field gives the equation V ′ = −
√

24πγV . Solving
this equation shows that V = V0e

−
√

24πγφ. Thus the only kind of potential
which can work is the one we have already seen for power-law inflation, with
λ =

√
3γ. The range of values of λ which occurs is exactly that which we

already saw. It can be shown that this potential really does reproduce the
fluid solution. To see this, notice that the initial data which must be cho-
sen for the scalar field are uniquely determined by the data for the fluid.
The quantities p and ρ defined from this scalar field satisfy the Euler equa-
tions since the energy-momentum tensor of the scalar field is divergence-free.
Hence they agree with the fluid density and pressure everywhere. Note that
this procedure does not extend to models which are homogeneous but not
isotropic.

The above analysis can be generalized to other equations of state. Con-
sider again the case of a perfect fluid and no other matter fields. Some general
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assumptions will be made on the equation of state to make a smooth and com-
plete discussion possible. It should, however, be noted that the considerations
which follow may be usefully applied in more general situations. Here it is
assumed that dp/dρ < C1 < 1 for a constant C1 and p/ρ > C2 > −1 for a
constant C2. Note that for any nonlinear scalar field |p/ρ| ≤ 1. For a general
equation of state the relation

1
2
φ̇2 − V (φ) = f

(
1
2
φ̇2 + V (φ)

)
(8)

must be analysed. This can be rewritten in the form F ( 1
2 φ̇

2, V (φ)) = 0.
Suppose that we have one solution of this equation. The implicit function
theorem gives the existence of a function g which satisfies F (g(V ), V ) = 0
for V close to its value in the original solution. This is because the partial
derivative of F with respect to its first argument is non-zero. The function g
satisfies the relation

g′(V ) =
1 + f ′(g(V ) + V )
1 − f ′(g(V ) + V )

. (9)

As a consequence the derivative of the locally defined function g remains
bounded on its domain of definition and g can be extended to a longer interval
provided it does not tend to zero at the endpoint of the interval. If g tended
to zero then this would imply that p/ρ → −1, in contradiction to what has
been assumed concerning the equation of state. It follows that the relation
(8) can be inverted globally to give φ̇2 = 2g(V ). Following the same steps as
in the case of a linear equation of state gives the equation

V ′(φ) = − 1
1 + g′(V )

√
48πg(V )(g(V ) + V ) . (10)

An exotic fluid model for accelerated cosmological expansion is the Chap-
lygin gas [13] with equation of state p = −A/ρ for a positive constant A. It
satisfies dp/dρ > 0 but violates the dominant energy condition for ρ < A,
since in that case p/ρ < −1. It is ruled out by the assumptions made above.
It turns out, however that there are cosmological models with this equa-
tion of state where ρ > A everywhere so that this difficulty is avoided. The
calculations as above can be done for the Chaplygin gas assuming the in-
equality ρ > A. The result is surprisingly simple. The potential is given by
V (φ) = 1

2

√
A(cosh

√
24πφ + 1

cosh
√

24πφ
). Thus a potential is obtained which

has a strictly positive lower bound and it satisfies the hypotheses of the the-
orems of [21]. Thus for the scalar field corresponding to the Chaplygin gas
detailed information is available about late time asymptotics. Unfortunately,
because of the fact that the transformation to the scalar field picture is not
globally defined, it is not possible to immediately deduce full information on
the late-time dynamics for the Chaplygin gas. It should also be remembered
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that the correspondence with a scalar field does not apply to solutions of
the Einstein equations with a Chaplygin gas which are homogeneous but not
isotropic.

Sometimes it is desirable to parametrize the degrees of freedom in a cos-
mological model with fluid in a way which is different from that using the
equation of state. An important example of this is the machinery required to
compare supernova observations with theoretical models. This will now be
sketched. If we know both the apparent and intrinsic brightness of a source
then we can compute its distance. (Technically, what can be computed is
the so-called luminosity distance.) Consider a spatially flat FLRW model.
Then the redshift z of an object is given in terms of the scale factor by
1 + z = a(to)/a(te), where to is the time at which the light from the object
is observed and te the time at which it is emitted. In a model of this kind
the luminosity distance can be computed to be DL = ra(to)(1 + z), where
r is the spatial separation between the wordlines of observer and emitter as
measured in standard coordinates. Let H = −trk/3, the Hubble parameter.
If the luminosity distance and Hubble parameter are expressed in terms of
redshift then the following relation results [22]:

H(z) =
[
d

dz

DL(z)
1 + z

]−1

. (11)

Supernova data provides points on the curve DL(z) and the equation (11) in
principle then determines H(z).

Let us ignore complications due to having only discrete data and suppose
we know the function DL(z) exactly. It will now be shown how the scale factor
a(t) can be reconstructed. Firstly, H(z) can be computed using (11). An
elementary computation shows that dt/dz = −[H(z)(1 + z)]−1. Integrating
this gives t as a function of z and inverting this gives z as a function of t.
Thus H(t) can be determined. Integrating once more gives a(t). In practise, in
order to distinguish between different theoretical models, an ansatz is made
for H(z) containing some parameters and a best fit analysis of the data is
carried out to obtain values for these parameters.

7 Tachyons and Phantom Fields

The ordinary scalar field we have considered up to now can be derived from
a Lagrangian with density −∇αφ∇αφ − V (φ). Recently dark energy mod-
els have been considered where the Lagrangian density is a more general
nonlinear function p(∇αφ∇αφ, φ). This is known as k-essence [2]. A great
advantage of the ordinary nonlinear scalar field is that it is guaranteed to
have well-behaved dynamics in the full inhomogeneous case. The Cauchy
problem is always well-posed. (This is even true if the potential is allowed
to be negative.) In contrast, k-essence models need not have a well-posed
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local Cauchy problem. The equation of motion of the scalar field need not
be hyperbolic. An additional complication is that since the equations are in
general quasilinear rather than semilinear (the propagation speed of waves
depends on the solution), the scalar field may develop shocks. In this case
there is an additional source of singularities supplementing the familiar ones
in general relativity. A useful discussion of some of these points, and the
question of which energy conditions are satisfied by k-essence models, can be
found in [9]. The models which violate the dominant energy condition are
called phantom or ghost models.

An interesting example is given by the case where the function p is given
by V (φ)

√
1 + ∇αφ∇αφ, which is known as the tachyon field or tachyon con-

densate. Note that although the word ‘tachyon’ originally denoted a particle
which travels faster than light, the tachyon field considered here has no su-
perluminal propagation. All characteristics of the equation lie inside the light
cone. The tachyon condensate corresponds to an effective field theory for a
large collection of tachyons. Consider now the special case where V (φ) is
identically one. Then provided the gradient of φ is timelike this model is
equivalent to a special case of the Chaplygin gas. To see this it suffices to
define the four-velocity of the fluid by

uµ =
∇µφ√

−∇αφ∇αφ
. (12)

This velocity field is irrotational. The equation for a Chaplygin gas in four-
dimensional Minkowski space also describes a timelike hypersurface of zero
mean curvature (a membrane) in five-dimensional Minkowski space. Ques-
tions of global existence for these equations have been studied in [15].

8 Closing Remarks

This paper gives a general introduction to the subject of cosmological models
with accelerated expansion, taking a mathematical point of view. After some
basic concepts have been introduced, the relevant physical background on in-
flation and quintessence is outlined. After this, various existing mathematical
results in the case of a positive cosmological constant are presented. They are
then confronted with the physical motivation. The exposition continues with
a review of results in the case where the cosmological constant is replaced by
a nonlinear scalar field. Some interesting open problems are mentioned. There
are close relations between models with scalar fields and models with perfect
fluids whose equation of state is more or less exotic. Some of these connec-
tions are explained. Following this it is explained how scalar fields defined by
Lagrangians which are non-linear in the first derivatives give rise to models
(known as k-essence) which various connections to both more conventional
scalar fields (with are linear in derivatives) and perfect fluids.
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At this moment new observations on cosmic acceleration are stimulating
a vigorous model-building activity. One aspect of this is that if string theory
is a theory of everything then it should, in particular, be able to explain dark
energy. It is thus natural that string theory should be one of the main sources
of new models. There are many models which are not touched on at all in
this paper, in particular those coming from brane-world scenarios [18] or loop
quantum cosmology [4]. We have taken a conservative strategy which covers
some of the models which are easier to understand mathematically. Even with
these limitations we could only treat a few aspects of the subject. A useful
task for mathematical relativity is to establish clear definitions of the various
models and to identify interesting dynamical issues concerning the solutions.
Another task is to systematize the web of relations which exists relating
different models and to determine which of them are (in an appropriate sense)
really different. Apart from its pedagogical aspects this paper is intended to
be a step towards meeting these challenges.
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László B. Szabados

Research Institute for Particle and Nuclear Physics, Hungarian Academy of
Sciences, 1525 Budapest 114, P. O. Box 49, Hungary
lbszab@rmki.kfki.hu

Abstract. The asymptotic symmetries and the conserved quantities of asymp-
totically flat spacetimes are investigated by extending the canonical analysis of
vacuum general relativity of Beig and Ó Murchadha. It is shown that the algebra
of asymptotic Killing symmetries, defined with respect to a given foliation of the
spacetime, depends on the fall-off rate of the metric. It is only the Lorentz Lie
algebra for slow fall-off, but it is the Poincaré algebra for 1/r or faster fall-off.
The energy-momentum and (relativistic) angular momentum are defined by the
value of the Beig–Ó Murchadha Hamiltonian with lapse and shift corresponding
to asymptotic Killing vectors. While this energy-momentum and spatial angular
momentum reproduce the familiar ADM energy-momentum and Regge–Teitelboim
angular momentum, respectively, the centre-of-mass deviates from that of Beig and
ÓMurchadha. The new centre-of-mass is conserved, and, together with the spatial
angular momentum, form an anti-symmetric Lorentz tensor which transforms just
in the correct way under asymptotic Poincaré transformations of the asymptotically
Cartesian coordinate system.

1 Introduction

Conserved quantities in various areas of physics play distinguished role, be-
cause they reduce the number of equations of motion to solve. In particular,
in mechanical systems with only a few degrees of freedom the conserved quan-
tities can (and e.g. in the Kepler problem do) specify the whole dynamics.
It is true that in (not completely integrable) field theories they do not, but
they can be used to parameterize the solutions of the field equations. In many
cases they provide an essential characterization of the states of the physical
system. For example, in Newtonian astrophysics the classification of stars is
based on their total mass and the total angular momentum with respect to
their own centre-of-mass, which classification is essential in the sense that
even the qualitative feature of the history of the stars depends critically on
the value of these parameters.

Apart from cosmology, both in general relativity and in non-gravitational
physics primarily we are interested in localized systems. These systems are
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modeled by appropriately decaying fields near infinity, whenever physical
quantities, like total energy-momentum and angular momentum, can be as-
sociated with the whole system. However, as is well known, we should make a
distinction between null infinity and spatial infinity. If we are interested e.g.
in radiative problems then null infinity and physical quantities defined there
will have significance. The familiar physical quantities are not conserved in
general, rather they change in time characterizing the main aspects of the
dynamics, telling us e.g. how much energy is carried away by radiation. (For a
recent review see e.g. [1].) On the other hand, if we are interested only in the
structure of the theory, e.g. to understand the gauge freedom or the genuine
conserved quantities in the theory, then we usually consider decaying at spa-
tial infinity. (For a possible, viable unification of the null and spatial infinities
and the connection between these two, see for example [2].) One of the most
natural frameworks in which these quantities are introduced is based on the
Hamiltonian [3–5]. Several remarkable statements have been proven on their
properties [6–8], among which the most important is probably the positive
energy theorem [9,10] and its extensions.

However, the recent investigations of the energy-momentum and (rela-
tivistic) angular momentum at the quasi-local level raised the question of
whether or not these are the “ultimate” expressions that any reasonable
quasi-local expression should reproduce at spatial infinity. (For a general dis-
cussion of these questions see e.g. [11], and for a recent, potentially promising
particular expression for the centre-of-mass see [12,13].) In fact, a systematic
reexamination of these classical results showed that although the energy-
momentum and the spatial angular momentum expressions seem to be the
“ultimate” ones, the centre-of-mass should probably be completed by an ad-
ditional (time dependent) term [14].

The main goal of the present contribution is to give a more detailed dis-
cussion of those issues of [14] that were not spelled out in detail. In particular,
we extend and refine the analysis and the results of Beig and Ó Murchadha [5]
on the structure of asymptotically flat spacetimes, and, especially, on the rel-
ativistic centre-of-mass. The novelty of the present approach is that we define
the total energy-momentum and relativistic angular momentum as the value
of the boundary term in the Beig–Ó Murchadha Hamiltonian using the 3 +1
parts of asymptotic Killing vectors as the lapse and the shift. This makes
it possible to find the correct explicit time dependence of the Hamiltonian,
yielding the familiar energy-momentum and spatial angular momentum, but
the centre-of-mass deviates from the Beig–Ó Murchadha expression by a term
which is the linear momentum times the coordinate time. We will see that
the angular momentum 4-tensor built from the spatial angular momentum
and the corrected centre-of-mass has much better transformation and con-
servation properties than the previous expressions.

Many questions in connection with the gravitational energy-momentum
and (relativistic) angular momentum can be formulated even in connection
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with the matter fields in Minkowski spacetime too, and it could be interesting
and useful to compare the gravitational and the non-gravitational cases. Thus
in Sect. 2 we discuss matter fields in Minkowski spacetime, and then, only in
Sect. 3, we consider general asymptotically flat spacetimes. That section is
devoted to the evolution equations and the boundary conditions. In Sect. 4 we
recall the main points of the analysis and results of Beig and ÓMurchadha [5],
and we formulate our questions.

The key objects in the present investigations are the asymptotic Killing
vectors. These will be introduced and discussed in Sect. 5. In Sect. 6 we
return to the discussion of the Beig–Ó Murchadha Hamiltonian, but, instead
of the original time independent lapses and shifts, we use the lapse and shift
parts of the asymptotic Killing vectors. Finally, in Sect. 7, we define the
total energy-momentum and relativistic angular momentum and discuss their
transformation and conservation properties. We summarize the main results
in Sect. 8.

Although we aimed at giving a logically complete treatise, several im-
portant issues, e.g. the discussion of the background (in) dependence of the
physical quantities, had to be left out. These can be found in [14]. We consider
metrics with faster than 1/r fall-off as well. If the conditions of the positive
energy theorem are satisfied then these fast fall-off metrics correspond only
to flat spacetime configurations. However, in our investigations the 3-space
Σ is not assumed to be complete, and its inner boundaries are not assumed
to be marginally trapped surfaces. Hence the positive energy theorem does
not imply flatness for fast fall-off. Thus it might be worth considering the
fast fall-off case as well.

We use the abstract index formalism, and only the underlined and bold-
face indices take numerical values. The signature of the spacetime metric
is −2, and the Riemann and Ricci tensors and the curvature scalar e.g. of
the spacetime covariant derivative ∇e will be defined by −4Ra

bcdX
bY cZd :=

∇Y (∇ZX
a)−∇Z(∇Y X

a)−∇[Y,Z]X
a, 4Rab := 4Rc

acb and 4R := 4Rabg
ab, re-

spectively. Thus Einstein’s equations take the form 4Gab := 4Rab− 1
2
4Rgab =

−Λgab − κTab, and we use the units in which c = 1.

2 Symmetries and Conserved Quantities
in Minkowski Spacetime

2.1 The Killing Fields of the Minkowski Spacetime

It is well known that the Killing vectors of the Minkowski spacetime form a
ten dimensional Lie algebra K, which contains a four dimensional commuta-
tive ideal T , and the quotient K/T is isomorphic to so(1, 3). The elements
of T are the constant vector fields, called the translations, which inherit a
natural Lorentzian metric from gab. If a point o of the Minkowski spacetime
is fixed, then the quotient K/T can be identified as the Lie algebra of those
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Killing fields that are vanishing at o : They are the rotation-boost Killing
vectors. Thus while the ideal of the constant vector fields is canonically de-
termined by the geometric structure of the spacetime, the quotient K/T can
be realized by Killing fields only if the ‘origin’ o has been specified.

If an orthonormal basis {Ea
a }, a = 0, . . . , 3, of constant vector fields and

the “origin” o have been chosen, then the familiar Cartesian coordinate sys-
tem {xa } is fixed by Ea

a = (∂/∂xa )a and xa (o) = 0. (Underlined Roman
indices from the beginning of the alphabet are concrete spacetime name in-
dices.) Thus this is not only a coordinate system in the sense of differential
topology, but it has a metrical content as well. Obviously, if we change the
vector basis by a Lorentz transformation, Ea

a �→ Ea
bΛ

b
a , and the origin o is

shifted to a new point, then the Cartesian coordinates change according to
the Poincaré transformation: xa �→ xbΛb

a + Ca , where Λc
bΛc

a = δ
a
b , and

Ca ∈ R
4 characterizes the shift of the origin.

If the basis vector Ea
0 is future pointing and timelike, then we usually

write the Cartesian coordinates as xa = (t, xi), i = 1, 2, 3. Thus the boldface
Roman indices from the middle of the alphabet are concrete spatial name
indices. In a fixed Cartesian coordinate system the general form of a Killing
1-form, given both in its covariant and its 3 + 1 forms, is

Ka = Ta ∇ax
a +Ma b

(
xa ∇ax

b − xb ∇ax
a
)

=
(
2xkMki + Ti − 2tMi0

)
∇ax

i +
(
2xkMk0 + T0

)
∇at. (1)

This is a linear combination of the independent translation and rotation-boost
Killing 1-forms, Ka

a := ∇ax
a and K

a b
a := xa ∇ax

b − xb ∇ax
a , respectively,

by constant coefficients Ta and Ma b = −Mb a . T0, Ti, Mij and Mi0 are the
components of the time and space translations, and the rotation and boost
parts of Ka, respectively, in the coordinates {xa }. Note that the spatial
components (in the 3 + 1 form) of the boost Killing 1-forms depend linearly
not only on the spatial coordinates, but on the Cartesian time coordinate as
well.

2.2 Quasi-Local Energy-Momentum and Angular Momentum

Let Σ be any smooth, compact, spacelike hypersurface with smooth boundary
S := ∂Σ. If ta is its future directed unit timelike normal, dΣ is the induced
volume element on Σ and T ab is the energy-momentum tensor of the matter
fields, then we can form the flux integrals

Qm
Σ [Ka] :=

∫

Σ

KaT
abtbdΣ (2)

for any vector field Ka. If, however, Ka is a Killing vector, then Qm
Σ [Ka] is

conserved in the sense that if Σ′ is another compact spacelike hypersurface
with the same boundary S, then the flux integrals defined on Σ and Σ′
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coincide. In particular, if D(Σ) is the domain of dependence of Σ and ξa is
a “general time axis” compatible with a foliation Σt of D(Σ) (in the sense
that the Lie dragging of one leaf of the foliation along the integral curves of
ξa with a given parameter value is another leaf), then the Lie derivative of
Qm

Σt
[Ka] along ξa is vanishing provided that Ka is a Killing field. Therefore,

for Killing vectors Ka the flux integral (2) is in fact associated with the
closed spacelike 2-surface S: Qm

Σ [Ka] = Qm
S [Ka]. Note that the lapse function

N of the foliation Σt is vanishing on S, and the shift vector Na is tangent
to S on S. The “general time axis” ξa need not be timelike or related to the
symmetry generators Ka in any way.

Since Qm
S [Ka] is linear in Ka, by (1) in a fixed Cartesian coordinate sys-

tem it has the structure Qm
S [Ka] = Ta Pa + Ma b Ja b . The coefficients of the

parameters Ta and Ma b define the quasi-local energy-momentum and (rela-
tivistic) angular momentum of the matter fields, respectively, associated with
the closed spacelike 2-surface S. If µ := T abtatb and ja := P a

b T
bctc are the

energy-density and the momentum density of the matter fields seen by the
observer ta, where P a

b := δa
b − tatb is the orthogonal projection to Σ, then

these quasi-local quantities can be given explicitly in terms of the indepen-
dent translation and rotation-boost Killing vectors as

Pa =
∫

Σ

Ka
a (µta + ja) dΣ, Ja b =

∫

Σ

Ka b
a (µta + ja) dΣ . (3)

(For a more detailed discussion of these concepts see e.g. [11].) These integrals
depend on the choice for the Cartesian coordinate system, but it is easy to see
that under the Poincaré transformation xa �→ xbΛb

a +Ca of the coordinates
Pa and Ja b transform just in the expected correct way: Pa �→ PbΛb

a and
Ja b �→ Jc dΛc

aΛd
b +Pc (CaΛc

b −CbΛc
a ). Note that, as a consequence of the

special linear time dependence of the boost Killing fields in (1), the centre-
of-mass part Ji0 of the angular momentum also depends on the Cartesian
time coordinate. Without this time dependence it would not be conserved
and would not have the correct transformation properties.

2.3 Total Energy-Momentum and Angular Momentum

The flux integral (2) can be defined even if Σ is not compact, e.g. if it extends
to spatial infinity of the Minkowski spacetime, provided the integral exists. To
ensure the finiteness of this integral, i.e. to have finite total energy-momentum
and (relativistic) angular momentum given by (3), certain boundary condi-
tions must be imposed on the energy-density µ and momentum density ja on
Σ. Such a boundary condition e.g. on a t = const hyperplane in the Cartesian
coordinates xa = (t, xi) might be the fall-off conditions

µ =
1
r4
µ(4)
(
t,
xk

r

)
+ o
(
r−4
)
, (4)

ji =
1
r4
ji(4)

(
t,
xk

r

)
+ o
(
r−4
)
, (5)
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for some functions µ(4) and ji(4), where r2 := δijx
ixj, the square of the radial

distance in the hyperplane Σ, and o(r−k) denotes a function f(r) for which
limr→∞(rkf(r)) = 0. o(r−0) denotes logarithmic fall-off and o(r+0) logarith-
mic divergence. We will use O(r−k) to denote a function f(r) for which the
limit limr→∞(rkf(r)) exists. These fall-off conditions ensure the finiteness
of the total energy-momentum, but the angular momentum is still diverging
logarithmically. Thus to have finite total angular momentum as well, stronger
or additional conditions must be imposed. One apparently natural condition
could be to require slightly faster than 1/r4 fall-off in (4) and (5). Since,
however, the typical fall-off rate of the energy and momentum densities of the
electromagnetic field is 1/r4, by a faster fall-off condition we would exclude
the electromagnetic field from our investigations. Thus we retain the 1/r4

fall-off, and seek for additional conditions.
Evaluating the total angular momentum expression with the energy and

momentum densities satisfying (4) and (5), one arrives at the additional nec-
essary and sufficient conditions

∮

S
v[ijj] dS1 = o

(
r−4
)
, (6)

∮

S
viµdS1 = o

(
r−4
)
. (7)

Here va is the outward directed unit normal to the large sphere S of ra-
dius r in the hyperplane Σ, and dS1 is the area element on the unit sphere.
However, the global integral conditions (6)–(7) are only implicit restrictions
on the asymptotic behaviour of µ and ja, and hence it is difficult to use
them in practice. If we are not interested in the exact boundary condi-
tions, as in the present discussion, then we prefer to have only an explic-
itly given sufficient condition. Such a sufficient condition might be the global
parity condition: The leading terms in (4) and (5) are required to be even
parity functions of their second argument: µ(4)(t, xk

r ) = µ(4)(t,−xk

r ) and
ji(4)(t, xk

r ) = ji(4)(t,−xk

r ). Then the fall-off and parity conditions together
ensure the finiteness of the total energy-momentum and (relativistic) angular
momentum of the matter fields.

It is easy to check that if the fall-off and parity conditions above are
imposed not only on a single spacelike hyperplane but on boosted hyperplanes
as well, then the spatial stress part of the energy-momentum tensor, σab :=
P a

c P
b
dT

cd, must also have the asymptotic structure

σij =
1
r4
σij(4)

(
t,
xk

r

)
+ o
(
r−4
)
, (8)

and the leading term σij(4)(t, xk

r ) must be an even parity function of xk

r .
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2.4 Asymptotically Cartesian Coordinate Systems

By the results of the previous two subsections the Cartesian coordinates ap-
pear to play a fundamental role in the definition and the study of the prop-
erties of the conserved quantities in Minkowski spacetime. But as we saw
in Subsect. 2.1, the Cartesian coordinates have metrical content, because,
by their very definition, they are adapted to exact geometric symmetries
of the spacetime. However, primarily we are interested in general, non-flat
asymptotically flat spacetimes, where we do not have any exact geometric
symmetry. Thus the question arises naturally whether or not there is some
natural generalization of the familiar Cartesian coordinates, at least asymp-
totically, even in a general asymptotically flat spacetime, which could play
an analogous role in constructing the conserved quantities.

Such an asymptotically Cartesian coordinate system (τ, ηi) may be based
on a foliation Στ of the asymptotically flat spacetime, which foliation can
be characterized on a typical leaf Σ of the foliation by the lapse function N .
Furthermore, we need to have a shift vector Na as well, which tells us how
the spatial Cartesian coordinates ηi, introduced on one leaf of the foliation,
is extended to the neighbouring leaves. Thus we would like to find a crite-
rion, formulated in terms of the lapse and the shift, when to consider the
corresponding coordinate system (τ, ηi) to be asymptotically Cartesian.

In Minkowski spacetime the lapse of the Cartesian coordinate system is
the constant function with value 1, and the shift is identically vanishing.
Therefore, it seems natural to consider the coordinate system (τ, ηi) to be
asymptotically Cartesian only if N → 1 and Na → 0 at infinity uniformly,
independently of the direction in which the limit is taken on Σ. This naive
criterion can also be supported by a formal analysis of the coordinate systems
in the conformally compactified Minkowski spacetime near the spatial infinity
i0 [14]: There exists a flat metric 0qab on Σ such that qij − 0qij and χij,
the components of the difference of the induced and the flat metrics and
of the extrinsic curvature in the 0qab–Cartesian coordinates ηi, respectively,
tend to zero as R2 := δijη

iηj tends to infinity, and moreover N(τ, ηk) =
1+O(R−1) and N i(τ, ηk) = O(R−1). In fact, an asymptotically vanishing N
would correspond to a foliation in which the time separation of the different
leaves tends to zero, while an asymptotically diverging N would correspond
to one in which this time separation is diverging. Thus, in particular, in
Minkowski spacetime the coordinate transformation connecting the Cartesian
coordinate system to a system (τ, ηi) based on an asymptotically vanishing
lapse is getting to be singular, i.e. (τ, ηi) is “collapsing” asymptotically.

If (τ, ηi) is an asymptotically Cartesian coordinate system in Minkowski
spacetime based on a smooth spacelike Cauchy surface Σ extending to the
spatial infinity, then the Killing field (1) takes the form

Ke = Mij

(
ηiDeη

j − ηjDeη
i
)

+ 2Mi0

(
ηiτe − τDeη

i
)

+ siDeη
i + sτe . (9)
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Here De is the intrinsic derivative operator, τe the future pointing unit
timelike normal to Σ and s(τ, ηk) = s(0)(τ, ηk

R ) + O(R−1), si(τ, ηk) =

s
(0)
i (τ, ηk

R ) + O(R−1). Thus s and se := siDeη
i, which would be the time

and space translation parts of Ke in (1), respectively, depend on τ , ηi and
1/R. Therefore, they are analogous to the supertranslations of the cuts of
future null infinity, and the proper translations correspond only to special
supertranslations. We will see in Subsects. 3.2 and 4.1 that these are pre-
cisely the ηi-independent supertranslations, while those that are odd parity
functions of ηk

R are the proper supertranslations and have only gauge content.

2.5 Conservation Properties

We saw in Subsect. 2.2 that the quasi-local energy-momentum and angular
momentum are conserved with respect to a time evolution characterized by
a vector field ξa if the evolution preserves D(Σ), i.e. the lapse part of ξa is
vanishing on S and the shift part is tangent to S on S. In the present sub-
section we formulate the analogous question for the total energy-momentum
and angular momentum.

Thus let Στ be a foliation of the Minkowski spacetime by smooth Cauchy
surfaces, let ta be its future pointing unit timelike normal and N the lapse of
the foliation. Let Na be the shift vector and define the “general time axis”
ξa := Nta +Na. Then we can take the integrals (3) defining the total energy-
momentum and angular momentum on the leaves Στ and calculate their
Lie derivative along ξa. Our question is what asymptotic conditions should
the lapse and the shift satisfy such that these Lie derivatives be vanishing.
However, this analysis consists of two things. The first is that even though the
integral (3) on a specific hypersurface is finite, it is not necessarily finite on
the hypersurfaces obtained by “time evolution” along ξa; i.e. we should ensure
that the boundary conditions ensuring the finiteness of (3) be preserved. The
second is to ensure that these finite integrals be the same.

Nevertheless, this analysis can be, and in the next section will be, car-
ried out even in general asymptotically flat spacetimes with vector fields Ka

having the asymptotic structure more general than (9). We will see that the
total energy-momentum and (relativistic) angular momentum are conserved
even if N and Na are linearly diverging (see (21)–(22)).

3 Asymptotically Flat Spacetimes

3.1 The Boundary Conditions

The definition of the asymptotic flatness of a spacetime that we adopt in the
present paper is probably the oldest one. We say that a spacetime is asymp-
totically flat at spatial infinity if it contains an asymptotically flat spacelike
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hypersurface Σ. Thus we should define the asymptotic flatness of such a hy-
persurface. We say that the spacelike hypersurface Σ is (k, l)-asymptotically
flat, if (1) there is a (negative definite) background metric 0qab on Σ, which is
flat outside a large compact subset K ⊂ Σ such that Σ−K is diffeomorphic
to R

3 minus a solid ball; (2) for some positive k and l the components qij
and χij of the physical induced metric and of the extrinsic curvature, respec-
tively, in the 0qab-Cartesian coordinate system on Σ −K satisfy the fall-off
conditions

qij − 0qij =
1
rk
q
(k)
ij + o

(
r−k
)
, (10)

χij =
1
rl
χ

(l)
ij + o

(
r−l
)

; (11)

and, (3) the leading terms q(k)
ij and χ

(l)
ij are even and odd parity functions

of xk

r , respectively. Here r is the radial coordinate defined by r2 := δijx
ixj.

In general these conditions do not imply that every component e.g. of the
derivative 0Dcqab tends to zero as 1/rk+1, where 0Dc is the derivative opera-
tor determined by the background metric, which would be a useful property
in practice. Similarly, still not every component of 0Dcχab tends to zero as
1/rl+1. If, however, we assume that the “rests” mab := qab − 0qab − r−kq

(k)
ab

and kab := χab − r−lχ
(l)
ab also satisfy

0Dcmab = o
(
r−k−1

)
, 0Dd0Dcmab = o

(
r−k−2

)
, . . . (12)

0Dcχab = o
(
r−l−1

)
, 0Dd0Dcχab = o

(
r−l−2

)
, . . . (13)

then, together with (10) and (11), these imply 0De1 . . . 0Des
qab = O(r−k−s)

and 0De1 . . . 0Des
χab = O(r−l−s) for any s = 1, 2, . . ., and the parity of

these derivatives is (−)s and (−)s+1, respectively. The properties mab =
o(r−k), 0Demab = o(r−k−1), . . . of mab will be denoted by mab = o∞(r−k).
Although it would be enough to require 0De1 . . . 0Des

mab = o(r−k−s) only
for some finite s depending on the order of the derivatives that appears in the
actual calculations, for the sake of simplicity we assume that mab = o∞(r−k).
Similarly, we require that kab = o∞(r−l).

We assume that the matter fields satisfy boundary conditions that yield
energy density µ, momentum density ja and spatial stress σab satisfying
the fall-off and parity conditions that we discussed in Subsect. 2.3, defined
with respect to the 0qab-Cartesian coordinate system. Furthermore, again by
technical reasons, we assume that the “rests” appearing in (4), (5) and (8)
are also o∞(r−4). Then we can form the integral

Qm
[
M,Ma

]
:=
∫

Σ

(
Mta +Ma

)
T abtbdΣ , (14)

and, as a consequence of the boundary conditions for µ and ja, this integral
exists if the asymptotic form of M and Ma is given by
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M
(
t, xk

)
= rAM (A)

(
t,
xk

r

)
+ o∞

(
rA
)
, (15)

Mi

(
t, xk

)
= rBM

(B)
i

(
t,
xk

r

)
+ o∞

(
rB
)
, (16)

where A,B ≤ 1 and if the equality holds in these inequalities then M(t, xk

r )
and Mi(t, xk

r ), respectively, must be odd parity functions of xk

r . Note that
(9), and hence (1) also, are special cases of (15)–(16). In the next subsection
we discuss the time dependence of Qm[M,Ma].

3.2 The Evolution Equations

Let the spacetime be foliated by smooth spacelike Cauchy hypersurfaces Σt,
and let a “general time axis” ξa = Nta + Na be also given. Then the 3 + 1
form of the equation T ab

;b = 0 is well known to be

µ̇ = N
(
−Daj

a + σabχab −
2
N
jaDaN − µχ

)
+ �LNµ, (17)

j̇b = N
(
−Daσ

ab − 1
N
σbaDaN + µ

1
N
DbN − 2jaχba − χjb

)
+ �LNj

b , (18)

where the dot denotes the projection to the leaves of the foliation of the Lie
derivative along ξa. They describe the evolution of the energy density and
the momentum density of the matter fields along the integral curves of ξa.
Similarly, the evolution equations for the geometry are

q̇ab = 2Nχab + �LNqab, (19)

χ̇ab = N
(
−Rab + 2χacχ

c
b − χχab

)
+ �LNχab −DaDbN

+ ΛNqab + κN
(
−σab +

1
2
σe

eqab +
1
2
µqab

)
. (20)

The first is a simple consequence of the definitions, but the second is the
space-space projection of the Einstein equations.

Next suppose that the spacetime is asymptotically flat (whenever the cos-
mological constant Λ is zero), and characterize the foliation and the general
time axis on a typical Cauchy surface Σ by the lapse N and the shift Na.
In the previous subsection we defined the asymptotic flatness of the space-
time by the existence of an appropriately defined asymptotically flat spacelike
hypersurface. However, the existence of such a single hypersurface does not
imply that the evolution of such a hypersurface will be asymptotically flat,
i.e. the boundary conditions are not necessarily preserved by the dynamical
equations. Thus our question is what conditions should we impose on the
lapse and the shift such that the evolution equations (17)–(20) preserve the
fall-off and parity conditions, both for the matter fields and the geometry.

Assuming that the lapse and the shift have the a priori asymptotic form
N(t, xk) = rCN (C)(t, xk

r )+ o∞(rC) and Ni(t, xk) = rDN
(D)
i (t, xk

r )+ o∞(rD)
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for some C and D, we can evaluate the right hand side of the evolution
equations. If we require that the leading orders and parities on both sides
coincide, we obtain two results. The first is a link between the fall-off rates
for the metric and the extrinsic curvature: In the generic case l = k+ 1. (For
the exceptional cases see [14].) The other is the detailed asymptotic structure
of the lapse and the shift, given by

N
(
t, xk

)
= 2xkβk

(
t
)

+ τ
(
t
)

+ rEν(E)
(
t,
xk

r

)
+ o∞

(
rE
)
, (21)

Ni

(
t, xk

)
= 2xkρki

(
t
)

+ τi
(
t
)

+ rF ν
(F )
i

(
t,
xk

r

)
+ o∞

(
rF
)
. (22)

Here the coefficients βk(t), τ(t), ρki(t) and τi(t) are arbitrary functions of
t, the powers E and F are bounded from above by the fall-off rate of the
metric: E,F ≤ (1−k), and if the equality holds in these inequalities then the
functions ν(E)(t, xk

r ) and ν
(F )
i (t, xk

r ) are odd parity functions of their second
argument, respectively.

Since the structure of Ni is similar to that ofN , it is enough to discuss only
e.g. (21). By k > 0 the leading term in (21) is the first, but to decide whether
the next order is the second or the third, we should consider the disjoint cases
k > 1, k < 1 and k = 1. If k > 1, which corresponds to a fast fall-off metric,
then the third term tends to zero at infinity as rE , where E is negative,
whenever the next order term is the second. If k < 1, which corresponds
to a slow fall-off, E may be positive, and if E is actually positive, then the
third term is diverging. In this case there is no reason to keep the second
term, because that cannot be isolated in the presence of the uncontrollable
diverging term. If k = 1, then E may be zero, and if it is actually zero, then
both the second and the third terms are asymptotically of the same order.
However, in spite of the fact that the third term is uncontrollable and of the
same order asymptotically as the second, we can make a natural distinction
between these: The second, being independent of the spatial coordinates, is an
even parity, while the third is an odd parity function of xk

r . Thus the structure
of N and Na resembles the structure of the timelike and spacelike projection
of the Killing fields of the Minkowski spacetime given by (1) or rather (9). In
particular, βk(t), ρki(t), τ(t) and τi(t) are analogous to the boost, rotation,
time translation and spatial translation generators, and the terms rEν(E) and
rF ν

(F )
i are similar to the proper temporal and spatial supertranslations of

(9). However, while the components of the Killing fields have a special time
dependence, the parameters βk(t), ρki(t), τ(t) and τi(t) may have arbitrary
time dependence.

Defining the integral Qm[M,Ma], given by (14), on each of the leaves Σt

of the foliation, one can compute its time derivative. It is
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Q̇m
[
M,Ma

]
=
∫

Σt

(
µ
(
Ṁ +MaDaN −NaDaM

)

+ ja
(
Ṁa +NDaM −MDaN − [N,M ]a

)

+ σabN
(
Mχab +D(aM b)

)

+ Da

((
µM + jbM

b
)
Na −

(
jaM + σabMb

)
N
))

dΣt . (23)

Taking into account the boundary conditions and substituting the asymptotic
form (21)–(22) here we find that Q̇m[M,Ma] is finite (such that the integral
of the total divergence in (23) is zero). We will see in Subsect. 5.1 that the
coefficients of µ, ja and σab in the volume integral of (23) are precisely the
various 3+1 parts of the Killing operator ∇(aKb) acting on Ka := Mta+Ma.
Thus for Killing vectors Qm[M,Ma] is constant in time even if the “time
evolution” is defined by ξa = Nta+Na with asymptotically linearly diverging
N and Na given by (21)–(22).

The question of whether the evolution equations preserve the boundary
conditions was investigated first by Beig and ÓMurchadha [5]. However, they
considered only the vacuum equations with the 1/r and 1/r2 a priori fall-off
of the metric and extrinsic curvature, respectively, and they assumed a priori
that the lapse and the shift are time independent. While the first two are not
serious limitations of their investigations, we do not see any reason to assume
the time independence of N and Na. In fact, the evolution equations allow
their arbitrary time dependence, and, as we will see, the assumption of their
time independence is too restrictive and we should abandon this.

Finally, for later convenience, it seems natural to introduce two notations
here. We will denote by A the set of all the pairs (N,Na) of lapses and shifts
with the asymptotic form (21)–(22). Such pairs may be called the “allowed
time axes”, and obviously A can be endowed with a natural real vector space
structure. We denote by G the subspace of A consisting of those pairs in which
the ‘parameters’ βk(t), ρki(t), τ(t) and τi(t) are all vanishing identically. We
will see in the next subsection that, for k ≥ 1, the generators of the gauge
transformations in the phase space of vacuum general relativity are precisely
the elements of G. Thus we refer to G as to the space of the gauge generators
even for k > 0.

4 The Hamiltonian Phase Space of Vacuum GR

4.1 The Phase Space
and the General Beig–Ó Murchadha Hamiltonian

The configuration space Q for the asymptotically flat spacetimes is the set
of the (negative definite) metrics on the 3-manifold Σ, a typical spacelike
Cauchy surface in spacetime, satisfying the fall-off and parity conditions of
Subsect. 3.1. Recalling that a curve in Q is a smooth 1-parameter family of
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metrics qab(u) and the tangent vector of this curve at the point qab := qab(0) ∈
Q is defined to be the derivative δqab := (dqab(u)/du)|u=0, the tangent vector
δqab satisfies the same boundary conditions as the metric qab itself does. The
space of the tangent vectors at qab is denoted by Tqab

Q. Recall also that
a 1-form at the point qab ∈ Q is a symmetric tensor density on Σ, which,
at the same time, is a linear mapping p̃ab : Tqab

Q → R defined explicitly
by 〈p̃ab, δqab〉 :=

∫
Σ
p̃abδqabd3x. However, the requirement that its action on

the tangent vectors be finite restricts its asymptotic structure. Indeed, if we
write p̃ab = 1

rm p̃(m)ab + o(r−m) for some m > 0, then from 〈p̃ab, δqab〉 < ∞
we obtain that m ≥ 3 − k, and if the equality holds in this inequality then
the components p̃(m)ij of the leading term must be odd parity functions of
xk

r . The space of these 1-forms at qab, the cotangent space of Q at qab, is
denoted by T ∗

qab
Q.

The phase space of vacuum general relativity is the cotangent bundle
T ∗Q := {(p̃ab, qab)| + boundary conditions } of the configuration space with
its natural symplectic structure: If X := (δp̃ab, δqab) and X ′ := (δ′p̃ab,
δ′qab) are any two tangent vectors at some point (p̃ab, qab) ∈ T ∗Q, then
let 2Ω(p̃ab,qab)(X ,X ′) :=

∫
Σ

(δp̃abδ′qab − δ′p̃abδqab)d3x. Then the boundary
conditions for the metrics and the canonical momenta ensure that Ω(X ,X ′)
is already finite.

On the other hand, the canonical momentum p̃ab is well known to be the
expression

p̃ab =
1
2κ

√
|q|
(
χab − χqab

)
=

1
rk+1

P̃ (k+1)ab + o∞
(
r−k−1

)
(24)

of the metric and the extrinsic curvature, where we gave its asymptotic expan-
sion too. Here the components of P̃ (k+1)ab in the 0qab-Cartesian coordinates
are odd parity functions of xk

r . Therefore, comparing this fall-off rate with the
condition m ≥ 3−k obtained above, we find that the applicability of the basic
concepts of the symplectic framework already excludes the slow fall-off met-
rics, i.e. k ≥ 1 must be assumed. Thus the a priori fall-off 1/r considered by
Beig and Ó Murchadha is the slowest possible in the symplectic framework.

Four of the vacuum Einstein equations, 4Gabt
atb = 0 and 4GbcP

b
at

c = 0,
play the role of constraints in the initial value as well as in the Hamiltonian
formulation of the theory. In the phase space context they are represented by
the vanishing of the so-called constraint functions

C
[
ν, νa

]
:=
∫

Σ

(
− 1

2κ

(
R+

4κ2

|q|

[
1
2
p̃2 − p̃abp̃ab

])√
|q|ν − 2

(
Dap̃

ab
)
νb

)
d3x ,

(25)
parameterized by pairs (ν, νa) of functions and vector fields, which may be
functions of the external time coordinate as well. A tedious but straight-
forward calculation shows that the constraint functions are finite and func-
tionally differentiable with respect to the canonical variables on the whole
phase space and close to a Lie algebra if and only if (ν, νa) ∈ G. Since, via



170 L.B. Szabados

the symplectic 2-form, they generate gauge motions in the constraint sur-
face Γ ⊂ T ∗Q, G can be identified with the space of the infinitesimal gauge
generators of Einstein’s theory of the vacuum asymptotically flat spacetimes.

The dynamics in the phase space is generated by the Hamiltonian, whose
general form is the sum of a constraint function and the integral of an ap-
propriately chosen total divergence. This total divergence should be chosen
in such a way that the corresponding Hamilton equations be just the correct
evolution equations (19) and (20) [4]. Beig and Ó Murchadha [5] showed that
the Hamiltonian

H
[
M,Ma

]
:= C

[
M,Ma

]
+
∫

Σ

2Da

(
p̃abMb

)
d3x

− 1
2κ

∫

Σ

Da

(
Mqabqcd

(
0Dcqbd − 0Dbqcd

)

+
(
0DbM

)
qabqcd

(
qcd − 0qcd

)

−
(
0DcM

)
qabqcd

(
qbd − 0qbd

))√
|q|d3x (26)

is finite and functional differentiable with respect to the canonical variables on
the whole phase space and close to a Lie algebra if and only if (M,Ma) ∈ A.
Thus we call H given by (26) the Beig–Ó Murchadha Hamiltonian. Note that
M and Ma need not be time independent, they may still have arbitrary time
dependence. The Poisson bracket of two Beig–Ó Murchadha Hamiltonians,
parameterized by (M,Ma) and (M̄, M̄a), respectively, is

{
H
[
M,Ma

]
,H
[
M̄, M̄a

]}

= −H
[
�LMM̄ − �LM̄M ,

[
M,M̄

]a −
(
MDaM̄ − M̄DaM

)]
. (27)

Furthermore, for infinitesimal gauge generators the Hamiltonian of Beig and
ÓMurchadha reduces to a constraint function: H[ν, νa] = C[ν, νa]. There-
fore, the Beig–ÓMurchadha Hamiltonians, parameterized by the elements of
A, form a Poisson algebra H, in which the constraints, parameterized by the
elements of G, form an ideal C. The quotient H/C, which is again a Lie al-
gebra, is the set of the Hamiltonians modulo the “gauge transformations”.
However, this quotient Lie algebra is spanned by the time dependent para-
meters βk(t), ρki(t), τ(t) and τi(t), and hence it is infinite dimensional.

4.2 Physical Quantities from the Beig–Ó Murchadha
Hamiltonians with Time-Independent Lapses and Shifts

As we mentioned, Beig and ÓMurchadha concentrated on the k = 1 case
and assumed that M and Ma were time independent:

M
(
xk
)

= 2xkBk + T + ν(0)
(xk

r

)
+ o∞

(
r−0
)
, (28)

Mi

(
xk
)

= 2xkRki + Ti + ν
(0)
i

(xk

r

)
+ o∞

(
r−0
)
. (29)
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Here Bk, Rki, T and Ti are real constants. The space of such pairs (M,Ma)
will be denoted by 0A, and the subspace of the “infinitesimal time indepen-
dent gauge generators” by 0G. Then the Beig–Ó Murchadha Hamiltonians
parameterized by the elements of 0A form a Poisson algebra 0H, in which
the constraints parameterized by the elements of 0G form a Lie ideal 0C. The
quotient Lie algebra 0H/0C is spanned by the ten real parameters Bk, Rki,
T and Ti, and, as Beig and ÓMurchadha showed, this is isomorphic to the
Poincaré Lie algebra.

Since H[M,Ma] is linear in M and Ma, its restriction to the constraint
surface Γ is a 2-surface integral at infinity of the boundary expression in (26),
which involves the parameters T , Ti, Rki and Bk linearly. The coefficients of
these parameters define the total energy, linear momentum, spatial angular
momentum and centre-of-mass, respectively:

H
[
M,Ma

]
|Γ =: TP0 + TiP

i +RijJ
ij + 2BiJ

i0 . (30)

The total energy and linear momentum defined in this way is precisely the
familiar ADM energy and linear momentum [3], and the spatial angular mo-
mentum is just the angular momentum of Regge and Teitelboim [4]. However,
the centre-of-mass expression deviates slightly from that given by Regge and
Teitelboim. While the Regge–Teitelboim centre-of-mass is not always finite,
the expression given by the Beig–Ó Murchadha Hamiltonian is. We call the
latter expression the Beig–Ó Murchadha centre-of-mass.

4.3 Transformation and Conservation Properties

We saw in Subsect. 2.2 that even the quasi-locally defined energy-momen-
tum and (relativistic) angular momentum of the matter fields transform in
the correct way under the Poincaré transformations of the Cartesian coor-
dinates. Since these transformations can also be interpreted as the action of
the symmetries of the Minkowski spacetime, it is natural to ask about the
transformation properties of the total energy, linear momentum, spatial an-
gular momentum and centre-of-mass, introduced in the previous subsection,
under the action of the “asymptotic symmetries” of the spacetime. Roughly,
the structure of (28) and (29) is similar to the structure of the time and space
projections of the Killing fields (1), thus it seems natural to identify them as
the “asymptotic symmetry generators”. Hence we would have to define the
action of them on the physical quantities in question.

However, since P0, Pi, Jij and Ji0 were introduced in the phase space
rather than the spacetime, one may think that it is enough to clarify their
transformation properties in the phase space. To do this we need an imple-
mentation of the “asymptotic symmetry generators” in the phase space in
the form of some functionally differentiable function. However, we already do
have such an implementation, namely the Beig–Ó Murchadha Hamiltonian
parameterized by the ‘symmetry generators’, and hence we can define its ac-
tion. The action of the “symmetry generator” (M̄, M̄a) ∈ 0A on the total
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energy, linear momentum, spatial angular momentum and centre-of-mass is
defined by the value on the constraint surface Γ of the Poisson bracket of the
Hamiltonian implementing the ‘asymptotic symmetry’ and the Hamiltonian
defining the physical quantities. Formally it is

δ(M̄,M̄a)

(
TP0+TiP

i+RijJ
ij+2BiJ

i0
)

:=
{
H
[
M̄, M̄a

]
,H
[
M,Ma

]}
|Γ . (31)

Evaluating the right hand side of (31) by using (27), the result can be sum-
marized as follows: If we form the column vectors

Pa :=
(
P0

Pi

)
, c̄a :=

(
T̄ 0

T̄ i

)
,

and the 4 × 4 anti-symmetric matrices

Ja b :=
(

0 −Ji0

Ji0 Jij

)
, λ̄a b :=

(
0 −2B̄j

2B̄i 2R̄ij

)
,

then we obtain

δ(M̄,M̄e)P
a = −Pb λ̄b

a (32)

δ(M̄,M̄e)J
a b = −

(
Jc b λ̄c

a + Ja c λ̄c
b +
(
c̄a Pb − c̄b Pa

))
. (33)

This is precisely (minus) the action of the infinitesimal Poincaré transforma-
tion, parameterized by c̄a ∈ R

4 and the Lorentz Lie algebra element λ̄b
a ,

on an energy-momentum 4-vector and a relativistic angular momentum 4-
tensor. Therefore, the total energy, linear momentum, spatial angular mo-
mentum and the Beig–Ó Murchadha centre-of-mass form Lorentz-covariant
quantities, and transform in the phase space in the correct way.

The next issue that we should discuss is whether these quantities are
conserved in time, or, more generally, under what conditions on the lapse
and shift defining the time evolution do we have conserved total energy-
momentum and (relativistic) angular momentum. Thus let (N,Na) ∈ A be
any allowed (maybe time dependent) time axis, given explicitly by (21) and
(22) with k = 1. Then we define the time derivative of Pa and Ja b by the
value on the constraint surface of the Poisson bracket of the Hamiltonian
defining the time evolution via the dynamical equations and the Hamiltonian
defining the physical quantities:

d
dt

(
Ta P

a +Ma b J
a b
)

:=
{
H
[
N,Na

]
,H
[
M,Ma

]}∣∣∣
Γ
. (34)

Evaluating the right hand side of (34) by using (27), for the time independence
of the physical quantities above we obtain the following list:

Ṗ0 = 0 iff βk(t) = 0 , (35)
Ṗi = 0 iff βk(t) = 0 , ρki(t) = 0 , (36)
J̇ij = 0 iff βk(t) = 0 , ρki(t) = 0 , τi(t) = 0 , (37)
J̇i0 = 0 iff βk(t) = 0 , ρki(t) = 0, , τi(t) = 0, τ(t) = 0 . (38)



The Poincaré Structure and the Centre-of-Mass 173

Therefore, the total ADM energy-momentum Pa and the relativistic angular
momentum Ja b , built from the spatial Regge–Teitelboim angular momentum
and the Beig–ÓMurchadha centre-of-mass, are conserved only with respect to
gauge evolutions, i.e. when (N,Na) ∈ G.

4.4 Three Difficulties

In Subsects. 2.5 and 3.2 we found that the lapse and the shift that ensure
the conservation of the total energy-momentum and (relativistic) angular
momentum of the matter fields may even be asymptotically linearly diverging,
i.e. they may be any element of A. In the light of this result it is quite
surprising that the analogous gravitational quantities are conserved only with
respect to considerably more restricted lapses and shifts: These must tend to
zero at infinity, and, in particular, the Beig–Ó Murchadha centre-of-mass is
not conserved even with respect to time evolution that is a pure asymptotic
time translation at infinity. Thus we raise the question of whether the total
energy-momentum and (relativistic) angular momentum introduced above
are really the “ultimate” expressions, or whether there is a slightly different
definition for them with better conservation properties. We expect that these
total quantities must be conserved at least with respect to pure asymptotic
time translations.

However, there is a second difficulty too. Although we noted in Sub-
sects. 3.2 and 4.3 that the structure of the allowed lapses and shifts are only
roughly similar to that of the time and space projections of the Killing fields
in Minkowski spacetime, respectively, in Subsect. 4.3 we swept this observa-
tion under the rug, and we considered the elements of 0A as the lapse and
shift parts of the generators of the ‘asymptotic symmetries’ of the spacetime.
Nevertheless, strictly speaking, neither the elements of A nor of 0A can be
identified with the generators of the asymptotic symmetries of the spacetime.
Indeed, while the elements of A have arbitrary time dependence and the ele-
ments of 0A are completely time independent, the components of the Killing
vectors of the Minkowski spacetime have a very specific, namely linear time
dependence. In particular, the familiar boost Killing vectors of the Minkowski
spacetime cannot be recovered, neither from A nor from 0A, in the weak field
approximation.

The third difficulty is that while the centre-of-mass of the matter fields in
Minkowski spacetime depends on the Cartesian time coordinate, the Beig–
ÓMurchadha centre-of-mass is completely time independent. But the time
dependence of the centre-of-mass was needed to prove not only its conserva-
tion, but also its correct transformation properties in the spacetime. Although
the relativistic angular momentum built from the spatial angular momentum
and the Beig–Ó Murchadha centre-of-mass transforms in the correct way in
the phase space, this does not imply its correct transformation in the space-
time.
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In the rest of this contribution we try to resolve these three problems
by showing first how the “correct” time dependence of the lapse functions
can be obtained. Since these resolutions grew up from the need to have a
systematic spacetime interpretation of the results and the analysis of Beig
and Ó Murchadha, we go back to spacetime.

5 The Asymptotic Spacetime Killing Vectors

5.1 The 3 + 1 Form of the Lie Brackets and the Killing Operators

Let Σ be a smooth spacelike hypersurface with future pointing timelike unit
normal ta and induced metric qab. Let Ka and K̄a be two arbitrary vector
fields on M , and let their 3+1 decomposition on Σ be Ka = Mta +Ma and
K̄a = M̄ta + M̄a. Then the 3 + 1 decomposition of their Lie bracket with
respect to Σ can be written as
[
K, K̄

]a
=
(
tatb + 2qab

)(
M∇(bK̄c) − M̄∇(bKc)

)
tc

+ ta
(
�LMM̄ − �LM̄M

)
+
([
M,M̄

]a −
(
MDaM̄ − M̄DaM

))
. (39)

Observe that the first two terms on the right are the time-time and the time-
space projections of the spacetime Killing operators acting on Ka and K̄a.
The third term on the right is precisely the combination of the lapse and
shift parts of Ka and K̄a that appeared as the new lapse in the calculation of
the Poisson bracket of two Beig–Ó Murchadha Hamiltonians (27). Similarly,
the last term is built from M , Ma, M̄ and M̄a precisely in the same way
as the new shift from the old lapses and shifts in (27). Thus one can expect
that the Lie bracket of spacetime vector fields plays some role in the Poisson
algebra of the Beig–Ó Murchadha Hamiltonians. Parts of the Killing operator
are vanishing in some sense. Therefore it is worth decomposing the Killing
operator in the 3 + 1 way as well.

Although the space-space projection of the Killing operator can be ex-
pressed by three dimensional quantities defined with respect to Σ, the time-
time and the time-space projections can be done only if we have not only
a single spacelike hypersurface, but a whole foliation and a notion of “time
flow” ξa as well. Thus we fix the vector field ξa, which will be represented
by a lapse and a shift according to ξa = Nta + Na. If Ẋa denotes the pro-
jection of the Lie derivative of the spatial Xa along ξa, then the full 3 +1
decomposition of ∇(aKb) is

Ntctd∇(cKd) = Ṁ + �LMN − �LNM , (40)
2NP a

c td∇(cKd) = Ṁa +
(
NDaM −MDaN

)
−
[
N,M

]a
, (41)

P a
c P

b
d∇(cKd) = D(aM b) +Mχab . (42)
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Recall that precisely these projections appeared in (23). Furthermore, apart
from the dot-derivatives, the right hand side of (40) and (41) are precisely
the special combinations of the lapses and shifts that already appeared in
(27). Equations (39–41) will be our key equations.

5.2 The Asymptotic Killing Vectors

In Subsect. 3.2 we introduced A as the space of the allowed, most general
lapse-shift pairs compatible with the boundary conditions via the evolution
equations. Thus in this picture A is the space of the allowed spacetime co-
ordinate systems based on a single, fixed asymptotically flat spacelike hy-
persurface Σ. Two elements of A, say (M,Ma) and (M ′,M ′a), determine
two different foliations of the spacetime, and the corresponding unit timelike
normals, ta and t′a, are different.

However, we can look at the space A from a slightly different perspective
too. Let us fix a vector field ξa, which determines a foliation of the spacetime
that is based on the single asymptotically flat Σ. Let ta be the future pointing
unit timelike normal of the leaves of this foliation, and let the lapse and the
shift parts of ξa be chosen to be allowed: (N,Na) ∈ A, where Nta +Na = ξa.
Then for any (M,Ma) ∈ A define the spacetime vector field Ka := Mta+Ma.
Note that we use the same ta to define Ka for all (M,Ma). Thus the role of ξa

is to provide a differential topological background to build spacetime vector
fields from the pairs (M,Ma). The space of such spacetime vector fields will
be denoted by Aξ, and let Gξ be its subspace whose elements are constructed
using G instead of A.

Next observe that the space-space projection of the Killing operator (42)
acting on any vector field Ka ∈ Aξ is vanishing asymptotically at least as
O(r−k), and if this fall-off is actually O(r−k) then the leading term has
even parity. However, its time-time and time-space projections can still be
arbitrary. This motivates us how to define the asymptotic Killing vectors: The
vector field Ka ∈ Aξ will be called an asymptotic Killing vector with respect
to ξa if tctd∇(cKd) and P c

a t
d∇(cKd) are also vanishing asymptotically at least

as O(r−k), and if this fall-off is actually O(r−k) then the leading terms have
even parity. We can introduce a slightly stronger notion: Ka ∈ Aξ will be
called a strongly asymptotic Killing vector with respect to ξa if tctd∇(cKd) = 0
and P c

a t
d∇(cKd) = 0, i.e. when the right side of (40) and (41) is vanishing

not only asymptotically, but pointwise as well. Note that although the Killing
equation has only the trivial solution in a general spacetime, the asymptotic
Killing and the strong asymptotic Killing equations can always be solved
among the vector fields Ka ∈ Aξ.

Indeed, tctd∇(cKd) = O(r−k) and P c
a t

d∇(cKd) = O(r−k) are not partial
differential equations, they are only ordinary differential equations for the
time dependence of M and Ma. In particular, if the asymptotic structure of
the lapse N and the shift Na is given by (21) and (22), respectively, and the
asymptotic structure of (M,Ma) ∈ A is
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M
(
t, xk

)
= 2xkBk

(
t
)

+ T
(
t
)

+ rGµ(G)
(
t,
xk

r

)
+ o∞

(
rG
)
, (43)

Mi

(
t, xk

)
= 2xkRki

(
t
)

+ Ti

(
t
)

+ rHµ
(H)
i

(
t,
xk

r

)
+ o∞

(
rH
)
, (44)

where G,H ≤ (1 − k), then both the asymptotic and the strong asymptotic
Killing equations give the ordinary differential equations

Ḃi = −2
(
Rijβ

j − ρijB
j
)
, (45)

Ṙij = 2
(
Biβj − βiBj

)
− 2
(
Rikρ

k
j − ρikR

k
j

)
, (46)

and if k ≥ 1, we also have

Ṫ = −2
(
Tiβ

i − τiB
i
)
, (47)

Ṫi = 2
(
Tβi − τBi

)
− 2
(
T jρji − τ jRji

)
. (48)

(45)–(48) is a system of ordinary differential equations for Bi(t), Rij(t), Ti(t)
and T (t). For given βi(t), ρij(t), τi(t) and τ(t) this can always be solved, and
the solution depends on six, and if k ≥ 1 then on ten constants of integration.
Here raising and lowering of the boldface Roman indices are defined by the
spatial projection of the constant Minkowski metric: ηij = −δij. Thus the role
of the asymptotic Killing equations is that they restrict the unspecified time
dependence of M and Ma. In particular,

• if ρij = 0, βi = 0, τi = 0 and τ = 0, i.e. if ξa is a pure gauge generator
(N,Na) ∈ G, then the spacetime coordinate system that ξa defines is
asymptotically collapsing. Then the solution of (45)-(48) is that Bi, Rij, Ti

and T are all constant;
• if ρij = 0, βi = 0, τi = 0 and τ = 1, i.e. if ξa is a pure asymptotic time

translation, then the corresponding coordinate system is an asymptotically
Cartesian coordinate system. Then Bi, Rij and T are constant but Ti(t) =
Ti − 2tBi for some constants Ti ;

• if ρij = 0, τ = 0, βi = const. with βiβjδ
ij = 1 and τi(t) = −2tβi, then

the corresponding coordinates form an asymptotically Rindler coordinate
system. Then the solution of (45)–(48) is considerably more complicated:
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Bi(t) = −βiβ
kBk +Πk

i Bk cosh(2t) −Rikβ
k sinh(2t) ,

Rij(t) = Πk
i Π

l
jRkl

+
(
βiRjk − βjRik

)
βk cosh(2t) −

(
βiΠ

k
j − βjΠ

k
i

)
Bk sinh(2t) ,

T (t) = βkBk +
(
T − βkBk

)
cosh(2t) − βkTk sinh(2t) ,

Ti(t) = Πk
i Tk +Rikβ

k + 2tβiβ
kBk

−
(
βiβ

kTk2tΠk
i Bk +Rikβ

k
)

cosh(2t)

+
(
βi

(
T − βkBk

)
+Πk

i Bk + 2tRikβ
k
)

sinh(2t) ,

where Πk
i := δki + βiβ

k is the projection to the 2-plane orthogonal to βi

and T , Ti, Bi and Rij are constants.

Therefore, both the time independent generators of Beig and Ó Murchadha
and the familiar Killing vectors of the Minkowski spacetime can be recovered
as asymptotic Killing vectors by an appropriate choice for ξa, and the latter
is connected with the asymptotically Cartesian coordinate system discussed
in Subsect. 2.4.

The space of the asymptotic Killing vectors and of the strong asymp-
totic Killing vectors (with respect to ξa) will be denoted by AK

ξ and A0
ξ ,

respectively, and obviously A0
ξ ⊂ AK

ξ ⊂ Aξ.

5.3 The Algebra of Asymptotic Symmetries

Contrary to expectations, the space Aξ does not close to a Lie algebra
with respect to the spacetime Lie bracket. To see this, it is enough the
consider the ta component of the Lie bracket given by (39) and take into
account that �LMM̄ − �LM̄M has the form of an allowed lapse for any
(M,Ma), (M̄, M̄a) ∈ A, while the leading term in tatb(M∇(aK̄b)−M̄∇(aKb))
has the formN−1xixj, which deviates from the structure of the allowed lapses.

If Ka and K̄a are any two asymptotic Killing vectors then by (39) their Lie
bracket, K̂a := [K, K̄]a, belongs to Aξ. Furthermore, the (time dependent)
parameters in its asymptotic expansion according to (43) and (44), B̂i and
R̂ij, and if k ≥ 1 then T̂i and T̂ also, are built from those of Ka and K̄a as

B̂i = 2
(
RijB̄

j − R̄ijB
j
)
, (49)

R̂ij = 2
(
RikR̄

k
j − R̄ikR

k
j + B̄iBj −BiB̄j

)
, (50)

T̂i = 2
(
T jR̄ji − T̄ jRji + T̄Bi − TB̄i

)
, (51)

T̂ = 2
(
TiB̄

i − T̄iB
i
)
. (52)

Now it is a direct calculation to show that B̂i, R̂ij, T̂i and T̂ satisfy (45)-
(48). Thus the leading, and if k ≥ 1 then the leading two terms in [K, K̄]a
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satisfy even the strong asymptotic Killing equations. However, in general
[K, K̄]a does not satisfy the asymptotic Killing equations even if both Ka

and K̄a are strong asymptotic Killing vectors. To see this we should calculate
the projections P c

aP
d
b �L[K,K̄]gcd, P c

a t
d �L[K,K̄]gcd and tctd �L[K,K̄]gcd. Using the

differential geometric identity L[K,K̄] = �LK �LK̄−�LK̄ �LK, it is a straightforward
calculation to show that P c

a t
d �L[K,K̄]gcd is not of order O(r−k) for general

Ka, K̄a ∈ AK
ξ , and it is not zero for general Ka, K̄a ∈ A0

ξ . Therefore, neither
AK

ξ nor A0
ξ close to a Lie algebra. Nevertheless, by the fact that B̂i, R̂ij, T̂i

and T̂ satisfy (45)–(48) the Lie bracket of any two asymptotic Killing vectors
deviates from an asymptotic Killing field only by an element of Gξ. This
observation makes it possible to introduce a natural Lie algebra structure
on the quotient vector spaces AK

ξ /GK
ξ and A0

ξ/G0
ξ , where GK

ξ := Gξ ∩ AK
ξ

and G0
ξ := Gξ ∩ A0

ξ . These quotient spaces are spanned by the (special time
dependent) parameters Bi and Rij, and if k ≥ 1 then also by Ti and T . Hence
they are isomorphic to each other and their dimension is six for k < 1 and
ten for k ≥ 1. The Lie multiplication of them is given by (49)–(52), and it
is easy to see that this Lie algebra is the Lorentz Lie algebra for k < 1 and
the Poincaré algebra for k ≥ 1. Therefore, the structure of the Lie algebra
AK

ξ /GK
ξ is connected with the fall-off rate of the metric: for slow fall-off it

is only the Lorentz Lie algebra, and the displacements of the origin of the
coordinate system emerge as asymptotic symmetries only for 1/r or faster
fall-off.

6 Beig–Ó Murchadha Hamiltonians
with Asymptotic Spacetime Killing Vectors

In this section we return to the discussion of the properties of the Beig–
ÓMurchadha Hamiltonian, but instead of the elements of the time indepen-
dent (M,Ma) ∈ 0A we parameterize them by the asymptotic Killing vectors.

Thus let us fix ξa, and define H[Ka] := H[M,Ma] for any Ka := Mta +
Ma ∈ AK

ξ . Then by (39) the Lie multiplication law (27) in the Poisson algebra
of the Beig–Ó Murchadha Hamiltonians can be written in the remarkably
simple form

{
H
[
Ka
]
,H
[
K̄a
]}

=





−H
[[
K, K̄

]a]+ constraints for Ka, K̄a ∈ AK
ξ ,

−H
[[
K, K̄

]a] for Ka, K̄a ∈ A0
ξ .

(53)
Therefore, apart from constraints, the Beig–ÓMurchadha Hamiltonian pre-
serves the spacetime Lie bracket of the asymptotic spacetime Killing vectors,
and it preserves the spacetime Lie bracket of the strong asymptotic spacetime
Killing vectors.
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The second issue that we consider is the conservation of the Hamiltonian.
Thus let (M,Ma) ∈ A, and calculate the total time derivative of H[M,Ma],
where the time evolution is generated by ξa = Nta +Na. Then

d
dt

H
[
M,Ma

]
= H

[
Ṁ, Ṁa

]
+
{
H
[
N,Na

]
,H
[
M,Ma

]}

= H
[
Ṁ +MeDeN −NeDeM,Ṁa +NDaM −MDaN − [N,M ]a

]

=
{

constraints for Mta +Ma ∈ AK
ξ ,

0 for Mta +Ma ∈ A0
ξ .

(54)

Here we used (27), and, in the last step, the definition of the asymp-
totic Killing and the strong asymptotic Killing vectors. Thus, the Beig–
ÓMurchadha Hamiltonian is constant (constant modulo constraints) with
respect to the time evolution defined by ξa if Ka = Mta + Ma is strongly
asymptotic Killing (asymptotic Killing) with respect to ξa.

7 Physical Quantities
from the Beig–Ó Murchadha Hamiltonians
with Asymptotic Spacetime Killing Vectors

7.1 The General Definition of the Physical Quantities

Independently of the details of the canonical analysis of the vacuum Einstein
theory, we can consider the Beig–Ó Murchadha Hamiltonian as a functional
of the initial data on an asymptotically flat spacelike hypersurface even in the
presence of matter fields and even if the fall-off rate of the metric is assumed
only to be positive. Thus for any (M,Ma) ∈ A let us define

Q
[
M,Ma

]
:= H

[
M,Ma

]
|Γ + Qm

[
M,Ma

]

= − 1
2κ

∫

Σ

Da

(
Mqabqcd

(
0Dcqbd − 0Dbqcd

)

+
(
0DbM

)
qabqcd

(
qcd − 0qcd

)

−
(
0DcM

)
qabqcd

(
qbd − 0qbd

)

− 2Mb

(
χba − χqba

))√
|q|d3x . (55)

Apparently, for zero Bi and Rij but non-zero T or Ti this expression is finite
only if k ≥ 1. However, as it was pointed out in [6], [7], [8] in the vacuum
case, Q[M,Ma] is finite even if k > 1/2 and the fall-off rate G and H in
(43)–(44) satisfies the stronger restriction G,H ≤ −k: Relaxing the fall off
for the matter fields analogously, the right hand side can be written as the
sum of a finite and a would-be divergent term, but the latter in fact vanishes
by the constraint parts of the field equations. (Of course, in this case the
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energy-momentum of the matter fields is not finite.) Similarly, apparently
Q[M,Ma] can be finite for non-zero Bi and Rij only for k ≥ 2, but, as an
analogous analysis shows [14], the slowest possible fall-off rate ensuring the
finiteness of (55) is in fact k ≥ 1 .

7.2 Total Energy, Momentum, Angular Momentum
and Centre-of-Mass

Next let us restrict Ka := Mta +Ma to be an asymptotic Killing vector and
introduce the notation Q[Ka] := Q[M,Ma]. Then since AK

ξ /GK
ξ ≈ A0

ξ/G0
ξ is

coordinatized by the integration constants Bi and Rij, and for k ≥ 1 by Ti

and T too, Q[Ka] is a linear expression of them:

Q[Ka] = TP0 + TiP
i +RijJ

ij + 2BiJ
i0. (56)

This defines the total energy, linear momentum, spatial angular momentum
and centre-of-mass, respectively. However, these quantities depend on the
choice of the vector field ξa. In particular,

• if ξa is chosen to be a pure gauge generator, then we recover the ADM
energy P0

ADM , the ADM linear momentum Pi
ADM , the Regge–Teitelboim

spatial angular momentum Jij
RT and the Beig–Ó Murchadha centre-of-mass

Ji0
BOM , respectively;

• if ξa is a pure asymptotic time translation, then the energy, linear mo-
mentum and spatial angular momentum coincide with the ADM energy
and linear momentum and the Regge–Teitelboim angular momentum, but
the centre-of-mass deviates slightly from the Beig–Ó Murchadha centre-of-
mass; it is Ji0 = Ji0

BOM − tPi
ADM ;

• if ξa defines an asymptotically Rindler coordinate system, then the energy,
linear momentum, spatial angular momentum and centre-of-mass will be
complicated time dependent combinations of the ADM energy and lin-
ear momentum, the Regge–Teitelboim angular momentum and the Beig–
ÓMurchadha centre-of-mass:

P0 = P0
ADM cosh(2t) + βkP

k
ADM sinh(2t),

Pi = Π i
kP

k
ADM − βi

(
P0

ADM sinh(2t) + βkP
k
ADM cosh(2t)

)
,

Jij = Π i
kΠ

j
lJ

kl
RT + 2β[iJ

j]k
RTβk cosh(2t) + 2β[iJ

j]0
BOM sinh(2t)

− β[iP
j]
ADM

(
1 − cosh(2t) + 2t sinh(2t)

)
,

Ji0 = −βiβkJ
k0
BOM +Π i

k

(
Jk0

BOM cosh(2t) + Jkl
RTβl sinh(2t)

)

+
1
2
Pi

ADM sinh(2t) + t
(
βiβk −Π i

k cosh(2t)
)
Pi

ADM

+
1
2
βi
(
1 − cosh(2t)

)
P0

ADM .
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Thus the definition of the physical quantities, defined by the value of the
Beig–Ó Murchadha Hamiltonian parameterized by the asymptotic spacetime
Killing vectors, do depend on the vector field ξa that we used to define the
asymptotic Killing vectors. Hence we should have a selection rule for ξa.
Based on the discussions in Subsect. 2.4, such a selection rule could be the
requirement that the spacetime coordinate system determined by ξa be as-
ymptotically Cartesian. Our suggestion is to take such a ξa. In fact, this
choice should be justified by the properties of the corresponding physical
quantities.

The analysis of Subsect. 4.3 to clarify the transformation properties of
this total energy, linear momentum, spatial angular momentum and centre-
of-mass can be repeated. It is easy to see that they have exactly the same
transformation properties in the phase space that the quantities defined in
Subsect. 4.3 had: They form a Lorentzian 4-vector Pa and an anti-symmetric
tensor Ja b , and transform according to the Poincaré transformation. How-
ever, defining the Cartesian spacetime coordinates by xa := (t, xi), we can
consider the transformation of Pa and Ja b under the Poincaré transforma-
tion of the Cartesian coordinates, xa �→ xbΛb

a + Ca , in the spacetime too.
Using the explicit form of M and Ma in terms of the spacetime Cartesian
coordinates and the defining equation (56), it is a straightforward calcula-
tion to show that Pa and Ja b transform just in the correct way. It might be
worth noting that the special linear time dependence of the centre-of-mass is
needed to derive the correct transformation properties. In fact, the relativistic
angular momentum tensor built from the Regge–Teitelboim angular momen-
tum and the Beig–Ó Murchadha centre-of-mass does not transform in the
expected way under Poincaré transformations of the Cartesian coordinates
xa in the spacetime.

Next let us consider again a general ξa, and calculate the total time deriv-
ative of Q[Ka] with respect to ξa. Now the coefficients in the asymptotic
spacetime Killing vectors Ka have explicit time dependence. Using the evo-
lution equations of Subsect. 3.2, we have

d
dt
Q
[
Ka
]

= Q
[
Ṁ +MeDeN −NeDeM,Ṁa +NDaM −MDaN − [N,M ]a

]

= 0 (57)

for any Ka ∈ AK
ξ . Therefore, the energy-momentum and angular momentum,

defined by Q[Ka] with the vector fields Ka that are asymptotic Killing with re-
spect to ξa, are conserved in time provided the time evolution is defined by the
same ξa. Thus, just as in Subsects. 2.5 and 3.2, the vector field ξa defining the
time evolution is required only to be an allowed time axis, but the generators
Ka for the physical quantities do depend on ξa. In particular, both the con-
servation (35)–(38) of the time independent quantities with respect to gauge
evolutions in Subsect. 4.3 and the conservation of the energy-momentum and
relativistic angular momentum defined in the present subsection with respect
to pure asymptotic time translations are special cases of (57).
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7.3 Translations for Slow Fall-Off Metrics

In Subsects. 5.2 and 5.3 we saw that the asymptotic translations emerge as
genuine asymptotic symmetries only for 1/r or faster fall-off, while for slow
fall-off they are lost in the sea of the “generators of gauge evolutions” and
the genuine asymptotic symmetries are only the asymptotic rotations and
boosts. On the other hand, by the results of Subsect. 7.1, for slow, 1/rk,
1/2 < k < 1, fall-off we can define energy-momentum but not relativistic
angular momentum. The aim of the present subsection is to resolve this
apparent contradiction by showing what the translations in the slow fall-off
case might be.

The key observation is that Q[M,Ma] can be finite for the slow fall-off
metrics provided the structure of M and Ma is

M
(
t, xk

)
= T

(
t
)

+ rKµ(K)
(
t,
xk

r

)
+ o∞

(
rK
)
, (58)

Mi

(
t, xk

)
= Ti

(
t
)

+ rLµ
(L)
i

(
t,
xk

r

)
+ o∞

(
rL
)
, (59)

where K,L ≤ −k, i.e. the xk-dependent parts of M and Ma tend to zero as
r−k rather than diverging as r(1−k) as in (43) and (44). This motivates us to
consider for some q ≤ (1 − k) the spacetime vector fields Ka = Mta + Ma

whose asymptotic structure is given by (58)–(59) and K,L ≤ q. We say that
they have q-fast fall-off. In general, these vector fields do not form a Lie
algebra.

Next consider the space qT K
ξ of such vector fields which are asymptotic

Killing vectors too: Let the tatb∇(aKb) and P a
c t

b∇(aKb) parts of the Killing
operator acting on them tend to zero at least as O(rq−1). Then the Lie
bracket [K, K̄]a of Ka ∈ qT K

ξ and K̄a ∈ AK
ξ contains terms of order r−k.

Thus the Lie bracket operation preserves the index q of the space qT K
ξ and

the components of [K, K̄]a have the structure (58)-(59) only if q ≥ −k. The
quotient qT K

ξ /qT K
ξ ∩ GK

ξ is isomorphic to R
4 and inherits a commutative

Lie algebra structure from AK
ξ /GK

ξ . Equations (47) and (48) show that T (t)
and Ti(t) are in fact constant for ξa generating e.g. an asymptotically col-
lapsing or asymptotically Cartesian coordinate system. (If ξa generates an
asymptotically Rindler coordinate system, then they still depend on time as
T (t) = T cosh(2t) + T ∗ sinh(2t) and Ti(t) = Ti + βi(T ∗ cosh(2t) + T sinh(2t))
for constants T , T ∗ and Ti satisfying Tiβ

i = 0.) Thus qT K
ξ may be inter-

preted as the space of the “q-fast fall-off asymptotic translations” in AK
ξ

even if k ∈ (0, 1), provided −k ≤ q ≤ (1 − k). On the other hand, by the
results of Subsect. 7.1 the translations yielding finite energy-momentum can
be the elements of qT K

ξ for any q ≤ (1 − k) if k ≥ 1, but for 0 < k < 1 only
those “q-fast fall-off” translations yield finite energy-momentum for which
q ≤ −k. Therefore, the space of the fast fall-off translations yielding finite
energy-momentum is precisely −kT K

ξ .
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8 Summary

The present investigation grew from the need to give a systematic space-
time interpretation of the results and the main points of the analysis of
canonical vacuum general relativity by Beig and Ó Murchadha. However,
while the centre-of-mass components of the relativistic angular momen-
tum of matter fields in Minkowski spacetime depend linearly on time, the
Beig–Ó Murchadha centre-of-mass expression for asymptotically flat space-
times is completely time independent. As a consequence of this the Beig–
ÓMurchadha centre-of-mass is conserved only with respect to “gauge evolu-
tions”, and although it transforms in the correct way in the phase space, it
does not in the spacetime.

To find the correct time dependence we suggest to parameterize the Beig–
ÓMurchadha Hamiltonian by the lapse and shift parts of appropriately de-
fined asymptotic Killing vector fields. A natural Lie algebra structure can be
introduced on the quotient of the space of the asymptotic Killing fields and
the subspace of “gauge generators”, and we showed that this Lie algebra is
only the Lorentz Lie algebra for slow fall-off, but it is the Poincaré algebra
for 1/r or faster fall-off metrics.

We define the total energy-momentum and relativistic angular momentum
by the value on the constraint surface of the Beig–Ó Murchadha Hamiltonian
parameterized by the asymptotic translation or rotation-boost Killing vectors.
This definition is completely analogous to that of the (quasi-local or total)
energy-momentum and angular momentum of matter fields using the Killing
vectors of the Minkowski spacetime. The energy-momentum obtained in this
way is just the standard ADM energy-momentum and the spatial angular
momentum is that of Regge and Teitelboim. However, the centre-of-mass
deviates from that of Beig and ÓMurchadha by a term, which is the linear
momentum times the coordinate time. This centre-of-mass has the correct
transformation properties, known for the matter fields in flat spacetime, both
in the phase space and in the spacetime with respect to asymptotic Poincaré
transformations, and it is conserved if the time evolution is generated by
asymptotic time translations.
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Abstract. Examples from the study of spatially inhomogeneous cosmological
space-times are given to illustrate the potential for synergy between mathemati-
cal analysis and computer simulation.

1 Introduction

In this contribution, I will discuss examples where computer simulations have
provided insight into the properties of strong field gravity. Some of the re-
search reported was done in collaboration with David Garfinkle, James Isen-
berg, Vincent Moncrief, and Marsha Weaver. For additional details and other
examples see [9].

The singularity theorems due to Penrose, Hawking, and others [25] state
that regular, generic initial data for reasonable matter will evolve to yield
a pathological behavior if the gravitational field becomes sufficiently strong.
However, these theorems do not describe the nature of the resulting pathol-
ogy and examples of several types are known. The relevance or lack thereof
to the everyday world are described by Penrose’s Cosmic Censorship Conjec-
tures (CCCs) [37]. These state that, generically, singularities will be hidden
inside the horizons of black holes. This means that naked singularities do not
occur in nature – i.e., singularities that do occur cannot influence the space-
time exterior to the event horizon of the black hole that contains them. A
stronger form of the CCC states that time-like singularities will not occur
generically even inside a horizon. This means that an observer will only de-
tect a singularity by hitting it. No time-like observer can detect signals from
a space-like singularity in his future. Consider, for example, the Penrose con-
formal diagrams for the Schwarzschild and Reissner-Nordström space-times.
The space-like singularity in the Schwarzschild solution obeys the CCC be-
cause the final singularity is within the black hole event horizon, is space-like,
and lies to the future of any observer falling into the black hole. An observer
falling into this singularity cannot receive any information from it until falling
into it. In contrast, the singularities in the Reissner-Nordström singularity are
time-like (even though they are within an event horizon). Signals from the
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singularities could reach (i.e. these singularities would be visible to) a time-
like observer.

There are several motivations for the study of singularities. Singularities
signal a breakdown of classical General Relativity. The nature of the break-
down may be relevant for quantum gravity since quantum gravity is often
invoked as a way to avoid this breakdown of the classical theory. If CCC is
false, naked singularities might exist and be important astrophysically. Fi-
nally, on route to a singularity, strong gravitational fields – interesting in
their own right – will be encountered. As an arena to study the approach
to the singularity and other features of strong field (nonlinear) gravity, we
shall focus on spatially inhomogeneous cosmological space-times. Cosmolog-
ical space-times do not necessarily describe the actual universe. They are
solutions to Einstein’s equations with “cosmological boundary conditions” in
contrast to the asymptotically flat space-times that describe localized sys-
tems such as binary black holes. In this discussion, we shall consider only
space-times with T 3 spatial topology. Clearly, however, the actual universe
is spatially inhomogeneous. These inhomogeneities are generally neglected in
cosmological studies. What role do the spatial inhomogeneities play in the
nature of singularities and in cosmologies in general?

One way to study singularities is to search for a way to characterize the
approach to the singularity. Long ago, Belinskii, Lifshitz, and Khalatnikov
(BKL) [3, 4] conjectured that the approach to the singularity that arose in
generic gravitational collapse had a very simple form as illustrated in Fig. 1.
We can imagine evolving the PDEs that are Einstein’s equations on a space-
time grid in the collapse direction. The BKL conjecture states that for any
spatial point, sufficiently close to the singularity, the spatial derivatives that
connect spatial points on the grid become dynamically unimportant and the
evolution may be described as the solution to the ODEs of a spatially homo-
geneous cosmology. This means that each spatial point evolves eventually as
a separate universe.

One may then ask if numerical simulation can be used to explore the na-
ture of the approach to the singularity and the BKL conjecture. Here we shall
describe just such a program as an example of the synergy between mathe-
matical and numerical techniques to provide insight and understanding in the
approach to singularities and other properties of cosmological space-times.
Both mathematical and numerical methods have advantages and disadvan-
tages. Mathematical techniques yield theorems that describe large classes of
solutions at once. On the other hand, these techniques often gain their power
by avoiding the need to obtain information about details of the solutions. Of
course, this is the forte of numerical simulation. However, such simulations
can study only one solution at a time so that it may be necessary to explore
a large parameter space to understand classes of solutions.

The following examples show how numerical simulation can be used to
make a strong statement in situations where one might naively expect this
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Fig. 1. Cartoon of the BKL conjecture. The grid at the left represents the space
(horizontal) and time (vertical downward) evolution of the Einstein equation PDEs.
BKL claim that sufficiently close to the singularity for any given spatial point, the
PDEs may be replaced at that point by the ODEs of an appropriate spatially
homogeneous cosmology

tool to have little use. The first example is the simple ODE

d2f

dx2
+

2
x

df

dx
+ f = 0 (1)

for a real function f(x). The general solution is, of course,

f(x) = a
sinx
x

+ b
cosx
x

(2)

where a and b are arbitrary constants. Note that the first term on the right
hand side of (2) has a finite limit as x → 0 while the second term is infinite
in that limit. A generic numerical solution to (1) will display the asymptotic
behavior of cosx/x as x → 0 since that term will be much larger than the
sinx / x term in the limit. Thus, in the 2-parameter space of solutions de-
scribed by the coefficients a and b, the solution b = 0 is a non-generic set
of measure zero. To discover the existence and properties of the non-generic
solution numerically, one may take advantage of the change in sign of the
limit of f(x) as b passes through zero. This is illustrated in Fig. 2. Start at a
large value of x, say xi and integrate (1) toward x = 0. Vary the initial data
(e.g. hold f(xi) fixed and vary df/dx at xi) to “zero in on” the initial data
equivalent to b = 0. This technique is essentially that used to explore critical
phenomena in general relativity. This simple example also illustrates how one
can explore the properties of a singularity (the generic f(0) is infinite) even
though computers cannot proceed in the presence of singular values.

A second example illustrates the point that the presence of an attractor,
i.e. a single asymptotic in time solution that arises from generic initial data,
in effect allows computer simulations to describe large classes of solutions
without the need to explore in detail the space of initial data. Figure 3 shows
the superposition of three solutions of the Lorenz system of equations [33]
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Fig. 2. Finding a set-of-measure-zero solution. The figure on the left displays nu-
merical solutions of (1) starting from x0 = 10 with different values of ẋ0. The inset
is shown as the figure on the right

Fig. 3. The Lorenz attractor. The graphs show two projections of numerical solu-
tions to (3) starting from 3 sets of initial conditions marked by the dots

dx

dt
= 10 (y − x),

dy

dt
= 28x − y − x z,

dz

dt
= x y − 8 z

3
, (3)

for x, y, and z functions of t. As can be seen, the location of the Lorenz
attractor may be determined by starting from a large open set of initial
points.
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2 Mixmaster Dynamics and the BKL Conjecture

In most of the remainder of this paper, we shall discuss the behavior of cos-
mological space-times. We shall further specialize to vacuum cosmological
space-times even though these are not relevant to the actual universe. How-
ever, the singularity structure in vacuum space-times illustrates the properties
of strong field gravity and avoids complications due to singularities in matter,
such as shock waves in fluids, that occur even in the absence of gravitational
fields.

2.1 How Spatially Homogeneous Cosmologies Collapse

Large classes of spatially homogeneous cosmologies can be described in the
“Hamiltonian formulation” (see [41]). We shall consider vacuum, anisotropic
models described by three scale factors Rx(t), Ry(t), and Rz(t) rather than
the single R(t) that describes the Friedmann–Robertson–Walker spatially
homogeneous, isotropic models. We follow Misner’s minisuperspace (MSS)
notation [35] in replacing these scale factors by equivalent variables {Ω, β±}
denoting respectively the volume and anisotropic shears. For the models of
interest here, Einstein’s equations may be obtained from the variation of the
Hamiltonian constraint which takes the form

2H0 = − p2
Ω + p2

+ + p2
− + V (Ω, β+, β−) (4)

where {pΩ , p±} are canonically conjugate to {Ω, β±} and V is a “potential”
that arises from the spatial scalar curvature.1

The simplest vacuum cosmology is the Kasner model described by three
anisotropic scale factors with power law dependence on comoving proper
time t. They are described by the metric

ds2 = − dt2 +
3∑

i=1

t2pi dx2
i (5)

where
3∑

i=1

p2
i = 1 =

3∑

i=1

pi (6)

and the space-like hypersurfaces are flat. Note that (6) implies that, in col-
lapse, one of the axes will (almost)2 always expand although the spatial vol-
ume t will decrease. In terms of the MSS variables, the potential V vanishes
yielding the Hamiltonian constraint

1Note that this Hamiltonian could be generalized by the addition of a number
of arbitrary constants. Here we assume that these have been absorbed by rescaling
the metric.

2There is an exceptional case for exponents {1, 0, 0 }. The term “(almost)” will
be used throughout this Chapter to indicate the existence of set-of-measure-zero
exceptional cases.
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2H0 = − p2
Ω + p2

+ + p2
− = 0. (7)

Defining v± = p±/pΩ allows the replacement of (7) by

v2
+ + v2

− = 1 (8)

with the solution (taking Ω to play the role of time)3

β± = v± |Ω| . (9)

In the MSS with axes {Ω, β±}, the Kasner solution is a straight line. As we
shall demonstrate explicitly later, the role of the potential V in other spa-
tially homogeneous models is to induce a change from one Kasner solution to
another. In many classes of spatially homogeneous cosmologies, in the direc-
tion of collapse to the singularity, there is a final Kasner epoch. In spatially
inhomogeneous models, there may be (in a sense to be clarified later) a fi-
nal Kasner epoch at each spatial point. We refer to space-times with a final
Kasner epoch in their approach to the singularity as asymptotically velocity
term dominated (AVTD) [29].

If there is no final Kasner epoch, the approach to the singularity is said
to exhibit local (in the spatially inhomogeneous case) Mixmaster dynamics
(LMD). This phenomenon was first identified by BKL [4] and then indepen-
dently by Misner [34] who coined the name.4 The archetypical model in this
class is the diagonal, vacuum Bianchi IX cosmology described (in MSS) by
the metric [34]

ds2 = −e3Ωdτ2 + e2Ω
(
e2β
)
ij
dσidσj (10)

where the anisotropic metric components are obtained from exponentiation
of β = diag(−2β+, β+ +

√
3β−, β+ −

√
3β−), all variables depend only on the

BKL time τ , and the spatial 1-forms σi satisfy the appropriate SU(2) rela-
tionship for Bianchi IX. Einstein’s equations may be found from the variation
of (4) [34] for

V (Ω, β±) = e4Ω−8β+ + e4Ω+4β++4
√

3β− + e4Ω+4β−+4
√

3β− + · · · (11)

where the ellipsis indicates terms that are (almost) always negligible. See,
however, the discussion in e.g. [6]. While decades of numerical simulation
indicated the plausibility of a never ending sequence of Kasner epochs in this
model, proofs of various aspects of Mixmaster dynamics have appeared only
recently [39,44].

In the absence of the potential V (with σi = dxi), the Kasner solution is
obtained. Equation (4) with (11) for V defines the dynamics in minisuper-
space (MSS). The Kasner solution represents the free particle in MSS. For
the Kasner solution, (8) may be written as

3Some arbitrary constants have been ignored.
4Mixmaster is a 1950s era brand of kitchen appliance.
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K ≡ v2
+ + v2

− = 1 , (12)

where v± = −p±/pΩ . The addition of the potential (11) causes (almost)
every Kasner epoch to end in a bounce off one of the first three terms on the
right hand side. After the bounce, the behavior is again described by (12) but
with different Kasner parameters. As first discussed by BKL, every Kasner
epoch can be identified by a single parameter u (related to the anisotropic
collapse rates) such that the n + 1st Kasner epoch is related to the nth one
(in Mixmaster dynamics) through

un+1 =

{
un − 1 for un ≥ 2 ,

1
un−1 for 1 ≤ un ≤ 2 .

(13)

The u-map (13) is an example of a “bounce law” found by using conserva-
tion of momentum between asymptotic Kasner solutions obtained from the
Hamiltonian (4) with V replaced by the dominant exponential term in (11).

It is easy to determine the dominant term. Just assume a Kasner solu-
tion (9) and substitute β± into V from (11). As is discussed elsewhere [16],
only one term will grow (almost always). (This dominance was exploited in
a numerical scheme [12] to allow a Mixmaster evolution to be followed for
hundreds of bounces with machine precision.) If the terms are separately
monitored, it is seen that a peak in the largest term coincides with a change
of Kasner epoch (i.e. a bounce). (See Fig. 1 in [16].) The elementary classical
mechanics problem of scattering off an exponential potential can be used to
relate ingoing and outgoing asymptotic momenta to yield bounce laws.

2.2 Do U(1)-Symmetric Cosmologies Exhibit LMD?

As an example of the role of numerical simulations in mathematical cos-
mology, we consider vacuum space-times on T 3 × R with a single spatial
symmetry. These are described by the metric [10] (for a specific choice of
lapse and shift)

ds2 = e−2ϕ
[
−e2Λ dτ2 + eΛ eab(x, z)dξadξb

]
+ e2ϕ(dξ3 + βa dx

a dτ)2 (14)

where a, b = 1, 2 and ϕ, Λ, x, z, and βa depend on spatial variables ξ1, ξ2,
and BKL time τ . The metrics of this class have two “twist” fields βa that sat-
isfy a constraint ea βa = 0, for ea canonically conjugate to βa. The constraint
is solved once and for all by replacing the two twist degrees of freedom by
the single twist potential ω (and its conjugate momentum r). The properties
of these models and their generalizations have been studied extensively by
Moncrief [36]. The explicit form of eab is given in [15,36] as is the discussion
of a canonical transformation to replace the twists βa with a single twist
potential ω.

Since it is possible to express a Bianchi IX model on S3 as a U(1)-
symmetric model on S3, one can identify LMD behavior in terms of the
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U(1) variables [18]. As is seen in Figs. 2 and 4 of [18], the U(1) variable ϕ,
related to the + polarization of the gravitational waves, tracks the largest
scale factor of the collapsing Mixmaster model, while z decreases monoton-
ically until a Mixmaster “era” ends.5 While this comparison is made for S3

spatial topology, BKL conjecture holds that the asymptotic dynamics of spa-
tially inhomogeneous models should be that of separate universes at every
spatial point. This local dynamics should be insensitive to global boundary
conditions.

Numerical simulations of U(1)-symmetric cosmologies have yielded the
expected behavior for ϕ [14].6 Since ends of eras need not occur in the short
simulations of [14], the predicted behavior of z was not seen there (see Fig. 6a
of [14]). Tentative observation of the predicted behavior for z was obtained
by exploration of the space of initial data. An example is given in Fig. 3
of [10]. More work needs to be done to confirm this.

Completely generic collapse has been studied by Garfinkle [22]. In that
case, numerical stability was obtained by choosing the variables of Uggla
et al. [42] which are better adapted to the dynamics. To analyze the simula-
tions, spatial invariants are used to identify the local value of BKL parameter
u at any given spatial point. Garfinkle was able to track the evolution of u
at a representative spatial point through several bounces. The sequence of
u-values agreed with those predicted by (13) to significantly better than 1%.

3 Mathematical-Numerical Synergy
in Spatially Inhomogeneous Cosmologies

Spatially inhomogeneous cosmologies appear to have either AVTD or LMD
approaches to their big crunch singularity. Table 1 shows references to nu-
merical simulations and mathematical results that support this conjecture.
Note that (except for spatially homogeneous space-times) the mathematical
statements can be made only if the space-times are AVTD – although there
have been recent suggestions for methods of attack in more general cases [42].

3.1 Gowdy Models as an Example

Vacuum, spatially inhomogeneous cosmologies with two spatial Killing vec-
tors on T 3 × R without “twists” are described by the metric first given by
Gowdy [23]:

5These era ending bounces yield un+1 = 1/(un − 1), are thus sensitive to initial
conditions, and provide the source of the Mixmaster chaos (see e.g. [6]).

6These simulations are of rather poor quality since the Hamiltonian constraint
is solved by hand and spatial smoothing is needed for stability. Confirmation of the
results in [14] was given by Hern [26].
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Table 1. Status of mathematical and numerical studies of singularities in collapsing
cosmological space-times. All models are vacuum space-times except those where
+φ indicates the presence of a scalar field

Model Singularity Type Mathematical Numerical

Polarized Gowdy AVTD [29]
Generic Gowdy AVTD [31] [11,13]
Polarized T 2 AVTD [27]
Magnetic Gowdy LMD [45]
Generic T 2 LMD [17]
Polarized U(1) AVTD [28] [15]
Generic U(1) LMD [14]
Generic U(1) + φ AVTD [8]
Generic +φ AVTD [1] [21]
Generic LMD [22]

ds2 = e(λ+τ)/2
(
−e−2τ dτ2 + dθ2

)
+ eP−τ (dσ +Qdδ)2 + e−P−τdδ2 . (15)

Einstein’s equations consist of wave equations for the + polarization P and
the × polarization Q, Hamiltonian and momentum constraints that are first
order in the derivatives of the background λ and P , Q, and λ depend only
on spatial variable θ and time τ . The wave equations may be obtained by
variation of

2H = π2
P + e−2Pπ2

Q + e−2τP,2θ +e2(P−τ)Q,2θ (16)

where πP , πQ are canonically conjugate to P , Q. Note that H is �= 0 and
is not the Hamiltonian constraint. As τ → ∞, we may obtain the velocity
term dominated (VTD) solution by neglecting spatial derivatives in the wave
equations:

P → v(θ)τ ; πP → v(θ) ;
Q → Q0(θ) ; πQ → π0

Q(θ) . (17)

Substitution of (17) into the exponential terms in (16) shows that both ex-
ponential terms will decay if 0 < v(θ) < 1 but not otherwise [11]. If the VTD
solution is consistent with the absence of the exponential potentials, we then
conjecture that the approach to the singularity is AVTD. If v(θ) is <0 or >1,
one of the exponential potentials will grow to cause a bounce. These bounces
will eventually drive v(θ) into the AVTD range. The evolution of P at a rep-
resentative spatial point in a numerical simulation validates this conjecture
as may be seen in Fig. 2 of [16].

Spiky features in Gowdy spatial waveforms are understood to arise in
the vicinity of “exceptional” points where the coefficient of one of the ex-
ponential potentials vanishes [11]. These features are now well understood
analytically [38].
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3.2 Expanding Gowdy Space-Times

The expanding polarized Gowdy cosmology was first studied analytically
in [5] where a WKB analysis was used to describe the behavior as gravita-
tional standing waves of decreasing amplitude in a background homogeneous
space-time. (For a recent treatment see [30].) The wave amplitude was found
to decay as t−1/2 where t = e−τ . Similar results were found for other, related
models including those with both wave polarizations [19,20,32,43].

Notice that the VTD solution (17) is expressed in terms of a number
of functions of space that are constant in time. These temporal constants
are equivalent to true constants that describe the Kasner solution. Equiv-
alently [13], these constants may be related to symmetries in the “target
space” with metric

dS2 = dP 2 + e2P dQ2 . (18)

Since the behavior in the expanding direction does not have the local BKL
character, the local constants are not relevant in this regime. However, cer-
tain combinations of these same constants have the property that their time
derivative is a total spatial derivative. Thus, for expanding Gowdy models,
we can explore the role of global constants7

ᾱ =
∮

dθ
(
2te2PQ,t Q− 2tP,t

)
,

β̄ = −
∮
dθ
(
te2PQ,t

)
,

γ̄ =
∮
dθ
(
−tQ,t Q+ te2PQ,t Q

2 + 2tP,t Q
)
. (19)

Although these constants had been known for a long time [24], Ringström
realized only recently that use of the constants to characterize the solutions
to the wave equations for P and Q could yield some surprises [40]. For the
Kasner model (written in the variables of (15)), the constants α, β, and γ
defined as the integrands of (19) satisfy

ζKasner ≡ α2

4
+ βγ = t2

(
Ṗ 2 + e2P Q̇2

)
≥ 0 (20)

where the over-dot is d/dt in the spatially homogeneous model. However,
because the average (i.e. the spatial integral over the circle) of a nonlinear
function is not, in general, equal to the (same) nonlinear function of the
averages, condition (20) need not hold when spatial dependence is allowed.

For

ζ̄Gowdy ≡ ᾱ2

4
+ β̄ γ̄ ≥ 0 , (21)

7As an aside we note that the integrands of these global constants can vary
wildly with θ so that the quality of preservation of the integrals during a simulation
is a good code test.
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the behavior is as previously described of decaying waves in a spatially ho-
mogeneous background cosmology.

Polarized Gowdy Models As a first example, consider polarized (Q =
0 = πQ) Gowdy models [5]. Einstein’s equations are

0 = P,tt +
1
t
P,t −P,θθ , (22)

0 = λ,t − t
(
P,2t +P,2θ

)
. (23)

The wave equation for P has an explicit solution in terms of products of the
form Z0(nt) cos(nθ + φn) where n is the integer mode number, Zν(x) is an
arbitrary Bessel function of order ν, and φn is an arbitrary constant phase.
Since all zero-order Bessel functions have the large argument asymptotic
expansion

Z0(nt) ≈
cos(nt+ ξn)√

t
(24)

for ξn an arbitrary phase constant, the general solution to the wave equa-
tion (22) behaves asymptotically for t → ∞ as

P (θ, t) ≈ P0 + ζ ln t +
1√
t
S(θ, t) (25)

where S(θ, t) is periodic in θ, is O(1) in powers of t, and the leading term in
S,t (θ, t) is O(1) in powers of t. With this asymptotic form, (23) becomes

λ,t ≈ t

(
ζ2

t2
+

S,2t
t

+
S,2θ
t

+ 2
ζS,t
t3/2

)
. (26)

If this were a Kasner model (S = 0), we would find

λKasner = λ0 + ζ2 ln t . (27)

However, the wave “energy” dominates in the Gowdy model to give

λ̄Gowdy ≈ (S,2t +S,2θ ) t (28)

where the over-bar is used to denote spatial averaging. See [5] for a discus-
sion of the resultant background space-time. The “usual” understanding of
expanding Gowdy models is that P̄ and Q̄ approach their Kasner forms (plus
decaying waves) but λ̄ evolves linearly rather than logarithmically in t.

Generic Gowdy Models Ringström recognized that, for Kasner, the Ein-
stein equations for P (t) and Q(t) could be written in terms of the constants
α, β, and γ so that three of the four constants in the solution would thus
be determined. Earlier Moncrief and I had discussed using numerical simula-
tions to find the point in the target space representing the asymptotic spatial
averages of P and Q. (See [7].)
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If P̄ and Q̄ are to have the asymptotic Kasner form, then the spatially
averaged wave equations should approach

t ˙̄P = β̄ Q̄ − ᾱ

2
,

t eP̄ ˙̄Q = β̄ e−P̄ ,

t eP̄ ˙̄Q = eP̄ (γ̄ + ᾱ Q̄ − β̄ Q̄2) (29)

which are equivalent to the wave equations for P and Q obtained from the
variation of (16) in the absence of spatial dependence.

However, Ringström proved [40] that ζ̄ defined by (21) could be negative.
In that case, the solutions can be expected to have the asymptotic form

eP̄ =
|β̄|√
−ζ̄

[
c1 − c2 cos

(√
−ζ̄ ln

t

t0

)]
,

Q̄ =
ᾱ

2β̄
+

√
−ζ̄
|β̄|

[
c2 sin

(√
−ζ̄ ln t

t0

)]

[
c1 − c2 cos

(√
−ζ̄ ln t

t0

)] (30)

as was then seen by numerical simulations (see Fig. 4). Figure 5 illustrates
the behavior of both sides of (29b) from a typical simulation (rewritten as
t ˙̄Q = β̄ e−2P̄ ). Clearly, as t → 0, the difference decays for ζ̄ > 0 but not for
ζ̄ < 0. Further details of this feature of expanding Gowdy space-times will
be published elsewhere.

Fig. 4. Comparison of P̄ from (30) (called Pfit) with the results of a simulation
(called Psimulation) that starts from initial data with ζ̄ < 0
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Fig. 5. The difference between the function of the averages and the averages of the
function tQ̇ = β e−2P for either sign of ζ̄ (shown as ζ in the figure)

4 General T 2-Symmetric Space-Times
as a “Laboratory” for Strong Field Gravity

As has long been recognized [23], Gowdy models on T 3×R are obtained from
the most general T 2-symmetric models by setting the twists (off-diagonal
metric components of the form gθxi

where xi is a symmetry direction) equal
to zero. We have shown elsewhere [10] that, without loss of generality, these
more general models may be described by

ds2 = − e(λ−3τ)/2 dτ2 + e(λ+µ+τ)/2 dθ2

+ eP−τ

{
dx + Qdδ +

[∫ τ

(QΘ) − Q

∫ τ

Θ

]
dθ

}2

+ e−P−τ

[
dδ −

(∫ τ

Θ

)
dθ

]2
(31)

where Θ = κ eµ/4 e(λ+2P+3τ)/2 for P , Q, and λ the Gowdy variables de-
pending on τ , θ, πλ = eµ/4 where πλ is canonically conjugate to λ, and κ
is the twist constant (see [17]). Einstein’s equations may be found from the
variation of [17]

H =
π2

P

4πλ
+

e−2τ P,2θ
4πλ

+
e−2P π2

Q

4πλ

+
e2(P−τ) Q2

θ

4πλ
+ κ2πλ e

(λ+2P+3τ)/2 . (32)

Just as in the Gowdy models, scattering off the separate exponential potential
terms yields bounce laws. Unlike the Gowdy model, there is no regime for the
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VTD solution that is consistent with all the potentials decaying. Thus, this
class of models is expected to exhibit LMD (see the discussion in [17]). Sup-
port for this conjecture is found in the numerical verification of the derived
bounce laws (see Table 3 and Figs. 5–8 in [17]).

In the expanding direction, these models are also interesting although
only preliminary results have been obtained (in collaboration with J. Isen-
berg). For simplicity of the discussion here, we shall restrict attention to the
polarized case. The equations become

P,tt +
1
t
P,t − P,θθ

4π2
λ

+
κ2eλ/2+P

2t7/2
(1 + tP,t ) +

P,θ πλ,θ

4π3
λ

= 0 , (33)

λ,t − t

(
P,2t +

P,2θ
4π2

λ

)
+

κ2eλ/2+P

t5/2
= 0 , (34)

πλ,t − κ2eλ/2+P

t5/2
= 0 . (35)

These equations differ from the polarized Gowdy ones (22)–(23) due to the
twist terms. These appear to play the role in (33) of damping out most
possible solutions to force the system toward a particular attractor.

A consistent analysis is as follows: Solve (35) by assuming π̄λ ∼ t−1/2.
Then the fourth term on the left hand side of (33) provides damping unless
P̄ ∼ − ln t. If λ̄ ∼ 5 ln t, the exponential term on the left hand side of (34)
will cancel the constant term in λ,t that was found in the Gowdy case. Loga-
rithmic time dependence of λ̄ rather than the linear time dependence of the
Gowdy case thus becomes the consistent solution. However, the coefficient 5
is inconsistent unless the average wave “energy”

Fig. 6. Graph of tE from (36) vs t in a computer simulation of polarized and generic
expanding T 2 symmetric cosmologies
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E ≈
∮
dθ t

(
P,2t +

P,2θ
4π2

λ

)
∼ 6

t
. (36)

Surprisingly, this apparently bizarre attractor arises generically in simulations
of these models. An example is shown in Fig. 6. Addition of Q �= 0 does
not change this result qualitatively although the deviations of the numerical
simulation from the hypothesized attractor seem larger. Further exploration
is in progress.

5 Conclusions

Numerical simulation has proven to be a valuable tool for the study of strong
field gravity. Many of the mathematical studies of generic Gowdy collapse
could proceed with confidence after the behavior of the solutions had been
revealed numerically as may be seen in Table 1. Several controversies over
Mixmaster dynamics in homogeneous space-times were clarified and resolved
by numerical simulation.

Challenges remain, however. Mathematical techniques needed to study
collapsing space-times with LMD are not known (see however the claims
in [42] and a recent preprint [2]). Numerical simulation has provided insight
into the behavior of these models.
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Abstract. The use of the projection of the Einstein tensor normally to a timelike
boundary as a set of boundary conditions for the initial-value problem of the vac-
uum Einstein equations is investigated within the setting of a particular first-order
strongly hyperbolic formulation. It is found that the components of such a projec-
tion give rise to boundary conditions that are appropriate, in a certain sense, for the
initial-value problem of the evolution equations and for the initial-value problem of
the auxiliary system of propagation of the constraints, at the same time. It can be
concluded that imposing such boundary conditions on the values of the fundamental
variables of the initial-value problem guarantees the propagation of the constraints.
This contribution presents a unified account of results that have recently appeared
separately in the literature. The presentation is meant to be accessible to a broader
readership.

1 Introduction

In considering the Cauchy problem of the Einstein equations Gab = 0 arising
by performing a 3+1 split of the metric and the Einstein tensor [15,16], one
is – arguably unnaturally – led away from the geometric origin and meaning
of the equations as a whole in favor of a purely analytical set up where a three
dimensional Riemannian metric is determined, from initial values, by a set of
second-order time-dependent partial differential equations of a rather mystic
nature. While such a set up for the Einstein equations may be quite appealing
to the Newtonian (i.e., analytic) mind, it carries a powerful drawback: the
loss of the manifest four-dimensional character of the Einstein equations.

From the point of view of analysis, the geometric character of the equa-
tions is irrelevant to the initial-value problem. For over two decades now,
since the influential paper by York where what is generally known as the
ADM formulation of general relativity is laid down [17], a trend has devel-
oped to systematically forget where the ADM equations come from in order
to focus, instead, on how to build a spacetime with them, by the might of
computer power. But computer might alone has proven insufficient to solve
problems of direct astrophysical relevance such as the gravitational wave
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emission from the collision of two black holes. Progressively by trial and er-
ror, the influence of several factors on the results of the numerical integration
has been identified. One such factor is the persistent refusal of numerical
solutions to verify the constraints at some finite time after the start of the
simulation. Under the spell of the remarkable historical development of the
Cauchy problem of general relativity – which teaches, among other things,
that once the constraints have been imposed on the initial data, they will be
satisfied by the solution of the evolution equations automatically – this recal-
citrant attitude of the numerical solutions ended up being entirely attributed
to defects of the numerical schemes. But the fundamental difference between
the Cauchy problem of the Einstein equations and the computational solu-
tion of the initial-value problem passed largely unrecognized. The difference
lies at the boundary of the initial data surface: the necessity for consistent
boundary conditions. The computational problem is not equivalent to the
Cauchy problem, but to the initial-boundary value problem of the Einstein
equations. The largely unrecognized fact is that if there is a boundary, the
constraints cannot be satisfied by the solution even if they are imposed on the
initial data with infinite precision, unless proper care is taken of the bound-
aries, again, with infinite precision. This is not a numerical problem but an
analytical one. In other words, even the best numerical solutions of difference
schemes are only mirroring what their perfect role models of the continuous
equations do: tend to violate the constraints.

As far as we are aware of, the computational relevance of the connection
between the constraints and the boundaries was first pointed out by Stewart
in [14], on the basis of the analysis of the initial-boundary-value problems of
the evolution equations of the fundamental variables themselves and of the
associated evolution equations of the constraints. Stewart found that there is
a set of boundary conditions that are appropriate for both initial-boundary
value problems simultaneously. The form of the boundary conditions in [14]
is not particularly illuminating, but that is not essential to our point: in a
sense, [14] was, to our knowledge, the first to write what one may loosely
refer to as constraint-preserving boundary conditions for general relativity.
But a geometrical interpretation of this connection between the constraints
and the boundaries was not developed in [14].

We wish to demonstrate that this connection arises in a natural way
out of the four-dimensional setting and is endowed of a geometrical char-
acter. In hindsight, the reason why this connection does not stand out to
the Newtonian mind can be traced directly to the lack of a manifestly four-
dimensional nature in the ADM equations.

We consider the projection of the Einstein tensor Gab along the direction
normal to a timelike hypersurface and pursue the question of the place that
the vanishing of such components of the Einstein tensor may have within
the well-known 3 + 1 setting of the Einstein equations. This route leads us
to the fact that, as equations for the fundamental variables internal to the
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boundary hypersurface, the vanishing projections of the Einstein tensor are
not identically satisfied by the solution of the initial-boundary value problem
of the fundamental variables, but must be imposed as boundary conditions,
and are consistent with the analysis of the initial-boundary value problem.
As equations for the constraint variables, they represent consistent boundary
conditions for the initial-boundary value problem of the constraints implied
by the evolution equations. The latter is a consequence of the fact that the
components of the Einstein tensor projected normally to the boundary are
equivalent to the constraints when they are evaluated on solutions of the
evolution equations.

The projection of the Einstein tensor normally to a timelike hypersurface
thus gives rise to appropriate boundary conditions for the initial-boundary
value problems of the fundamental variables and of the constraints simultane-
ously. Because such equations are internal to the boundary in the sense that
they involve no second derivatives across the boundary, they require no in-
formation from outside, in exactly the same sense that the initial constraints
require no information from before the initial slice. They function as a screen
against the incoming flow of information, much of which being incompatible
with the Einstein equations.

This contribution unifies results that have recently appeared separately in
the literature [4–7]. The presentation is meant to be accessible to a broader
readership. The readers are referred to [4–7] for details.

2 Preliminaries

Throughout we assume the metric of spacetime, gab, to be given in the 3 + 1
notation with vanishing shift vector, that is:

ds2 = gabdx
adxb = −α2dt2 + γijdx

idxj (1)

where α(t, xk) is the lapse function and γij(t, xk) is a three-dimensional Rie-
mannian metric for the instantaneous time slices of spacetime. The assump-
tion of vanishing shift vector is made for simplicity. The reader may assume
that a non-vanishing shift vector will greatly increase the complexity of the
calculations in the arguments presented here. The Einstein equations Gab = 0
for the spacetime metric can be expressed in the ADM form [17]:

γ̇ij = −2αKij , (2)

K̇ij = α
(
Rij − 2KilK

l
j +KKij

)
−DiDjα , (3)

with the constraints

C ≡ −1
2
(
R−KijK

ij +K2
)

= 0 , (4)

Ci ≡ DjK
j
i −DiK = 0 . (5)
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Here an overdot denotes a partial derivative with respect to the time coordi-
nate (∂/∂t), indices are raised with the inverse metric γij , Di is the covariant
three-derivative consistent with γij , Rij is the Ricci curvature tensor of γij ,
R its Ricci scalar, Kij is the extrinsic curvature of the slice at fixed value of
t and K ≡ γijKij . Expressed in terms of the Einstein tensor, the constraints
(4)–(5) are related to specific components in the coordinates (t, xi):

C = −α2Gtt , (6)
Ci = −αγijG

jt , (7)

where (7) holds only for vanishing shift vector. The constraint character (the
absence of second derivatives with respect to time) is a consequence of the
fact that the only components of the Einstein tensor that appear in (6)–(7)
have a contravariant index of value t. This follows from the Bianchi identities,
∇aG

ab = 0, via the following argument [16]. Writing the Bianchi identities
explicitly in terms of the coordinates (t, xi) we have

∂tG
tb = −∂xG

xb − ∂yG
yb − ∂zG

zb − 4Γ a
acG

cb − 4Γ b
acG

ac (8)

where 4Γ c
ab are the Christoffel symbols of the spacetime metric gab. Man-

ifestly, the right-hand side contains no time derivatives of any components
of the spacetime metric of order higher than second. Therefore ∂tG

tb does
not involve time derivatives of order higher than second, thus Gtb does not
involve time derivatives of order higher than first. Linear combinations of
the four components Gtb will also lack second time-derivatives of any com-
ponents of the spacetime metric. Then Gtb or any four linearly independent
combinations of them are, effectively, constraints with respect to the time
coordinate, since the remaining six components of the Einstein tensor – rep-
resented in “unfolded” form in terms of γij and Kij by the twelve equations
in the set (2)–(3) – all contain second time-derivatives of γij . In geometric
terms, denoting by nb the unit normal to the slices of fixed value of t, given by
na = gabnb = −αgat = δa

t /α, one sees that Gabn
b = −αGt

a, thus (6)–(7) are
vanishing linear combinations of the projection of the Einstein tensor along
the normal to the time slices, Gabn

b = 0 .
By a similar argument, the Bianchi identities also imply that vanishing lin-

ear combinations of the components of the Einstein tensor with a contravari-
ant x index, that is Gax = 0 are, effectively, constraints with respect to the x
coordinate (likewise, Gay = 0 and Gaz = 0 are constraints with respect to the
y and z coordinates, respectively). The components Gax = 0 can be given
a geometric interpretation in terms of the unit spacelike vector eb normal
to a constant−x hypersurface, which is given by ea = gabeb = gax/

√
gxx =

(0, γix/
√
γxx). We have that Gax = gacGx

c = gacgbxGcb = gac√gxxGcbe
b.

Thus it is vanishing linear combinations of the components of the projection
of the Einstein tensor along the normal to a constant−x hypersurface that
are the four constraints with respect to the x coordinate, that is: Gabe

b = 0.
Explicitly we have:
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Gx
t = −1

2
γix
(
(ln γ),it −γklγ̇ik,l

)
−KDxα+Kx

kD
kα

+α
(
γklΓ j

klK
x
j + γixΓ j

ikK
k
j

)
, (9)

Gx
x =

K̇ − K̇x
x

α
− 1

2
(R +KijKij +K2) +KKx

x

+Rx
x +

1
α

(
DjDjα−DxDxα

)
, (10)

Gx
y = −

K̇x
y

α
+KKx

y +Rx
y − 1

α
DxDyα (11)

Gx
z = −K̇x

z

α
+KKx

z +Rx
z − 1

α
DxDzα . (12)

Here Γ k
ij = (1/2)γkl(γil,j + γjl,i − γij,l), and the time derivative of the

components of the extrinsic curvature is applied after raising an index, that
is: K̇i

j ≡ (γikKkj),t . One sees that Gabe
b = 0 are evolution equations for some

of the fundamental variables. The difference with (2)–(3) is that Gabe
b = 0

are internal to surfaces of fixed value of x.
With respect to the individual roles of all three sets of equations (2)–(3),

(4)–(5) and (9)–(12), one may tentatively think that (4)–(5) must be solved
for the values of γij and Kij at t = 0, and then γij and Kij at t = dt would
be obtained by (2)–(3) at any point xi except at the boundary, where only
four of the 12 fundamental variables can be obtained by the use of (9)–(12).
But how to make sense of (2)–(3), (4)–(5) and (9)–(12) in terms of an initial-
boundary value problem for γij and Kij is not straightforward, and we refrain
from the task. In the next section, we use a first-order reduction of the ADM
equations in order to find the role that (9)–(12) play in the framework of a
first-order initial-boundary value problem for the Einstein equations.

3 The Components of the Projection Gabe
b = 0

as Boundary Conditions

In this section we develop the notion that the projections Gabe
b = 0 restrict

the values of some fundamental variables that are usually thought to be ar-
bitrary along the boundary for the purpose of generating a solution to the
Einstein equations from constrained initial data. The normal projections to
the boundary surface, thus, assume the role of choosers of boundary val-
ues, in analogy with the role of the projections normal to the initial slice as
choosers of initial data. Intuitively, the boundary equations Gabe

b = 0 select
information that comes into the region of interest by flowing in through the
boundaries. This concept is made precise in the following by resorting to the
mathematical technology of strongly hyperbolic systems of partial differential
equations [9].
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3.1 Strongly Hyperbolic Formulations of the Einstein Equations

In order to have a system of equations that yields solutions to the Einstein
equations and is well posed at the same time, a common strategy is to start
by rewriting the ADM equations into first-order form by defining a set of 18
new variables, fkij , symmetric in the pair (i, j), that are linearly independent
combinations of the space-derivatives of the metric γij,k. The new variables
evolve according to equations derived from the ADM equation (2), so the
ADM system is enlarged by 18 more equations. In that way, the ADM equa-
tions are automatically expanded into a 30-dimensional quasilinear system of
partial differential equations of the first order,

u̇ = Aiu,i + b , (13)

where u = (γij ,Kij , fkij) represents the set of 30 fundamental variables, Ai =
Ai(u, t, xi) are three 30-dimensional matrices and b = b(u, t, xi) represents
undifferentiated terms. The new first-order system of equations is equivalent
to the Einstein equations if the map between γij,k and fkij is written in the
form

Ckij(fkij , γij,k) = 0 (14)

and included as 18 new constraints in addition to C and Ci.
Such a first-order version of the Einstein equations is said to be strongly

hyperbolic if and only if, for every arbitrary fixed covector ξi such that
γijξiξj = 1, the matrix A ≡ Aiξi has real eigenvalues and a complete set of
eigenvectors [9]. It may be worth pointing out that it seems to be impossible
to find a transformation between γij,k and fkij that brings about strong hy-
perbolicity to the first-order reduction of the Einstein equations unless the
evolution equations for fkij that are derived from the ADM equation (2) are
modified by the addition of terms proportional to the constraints [8, 11,12].

For every spatial direction ξi, the existence of a complete set of eigenvec-
tors of the principal symbol is equivalent to the existence of a (local) basis of
traveling waves for the fundamental variables, referred to as the characteris-
tic fields. For each ξi, the set of characteristic fields splits into three subsets:
those that travel with zero speed, those that travel in the direction of ξi with
some associated characteristic speed and those that travel in the direction op-
posite to ξi with their own characteristic speed. If ξi is the outward-pointing
normal to a boundary, then the characteristic fields that travel in the direc-
tion of ξi are referred to as outgoing fields, and those that travel opposite to
ξi are referred to as incoming fields. In what follows, the term “static fields”
is used to denote the characteristic fields that travel with zero speed.

Because the characteristic fields are essentially traveling waves, their field
values at some initial time propagate along the direction of travel at their as-
sociated characteristic speed. Therefore, the values of the static and outgoing
characteristic fields at a timelike boundary are propagated from prescribed
initial values in the interior and cannot be assigned arbitrarily. On the other
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hand, the values of the incoming characteristic fields at the boundary “would
come from outside” and must be prescribed in order for the problem to have
a unique solution [9].

Summarizing, the initial-boundary-value problem of a generic strongly
hyperbolic reduction of the Einstein equations requires the prescription of
initial data satisfying 4 + 18 = 22 constraints, and as many boundary val-
ues as incoming characteristic fields. Because the Einstein equations consti-
tute a constrained system, at this point it is not completely clear whether
the boundary values can be specified arbitrarily (much unlike the case of
a generic unconstrained problem where the incoming boundary values are
completely free). In fact, if it turns out that any of the four projections
Gabe

b = 0 given by (9)–(12) involve the incoming characteristic fields, then
clearly those incoming characteristic fields involved may not be assigned ar-
bitrary boundary values, but must be prescribed in accordance with (9)–(12).
On the contrary, if no incoming characteristic fields appear in (9)–(12), then
the required boundary values may be prescribed arbitrarily. In order to gain
insight into the arbitrariness of the boundary values, in the next Subsec-
tion we specialize the discussion to a particular well-known reduction of the
Einstein equations.

3.2 The Case of the Einstein–Christoffel Formulation

The Einstein-Christoffel (EC) formulation, due to Anderson and York [1], is
a symmetric-hyperbolic first-order reduction of the Einstein equations that is
achieved by taking three steps away from the ADM equations: the addition
of a certain set of 18 first-order variables representing the space-derivatives
of the metric, the addition of terms proportional to the constraints in the
evolution equations of such new first-order variables, and the prescription of
a lapse function proportional to the square root of the determinant of the
metric, that is, α ≡ Q

√
γ with Q assumed arbitrarily prescribed a priori.

The new (first-order) variables are the following set of linear combinations of
the derivatives of the metric:

fkij ≡ Γ(ij)k + γkiγ
lmΓ[lj]m + γkjγ

lmΓ[li]m , (15)

where Γ k
ij are the Christoffel symbols of γij . With this definition and the

choice of densitized lapse, the right-hand side of the ADM equation for the
evolution of the extrinsic curvature, (3), reduces to a divergence with addi-
tional undifferentiated terms. Evolution equations for fkij can be obtained
by taking a time derivative of (15) and using the ADM equation for the
evolution of the metric, (2), to eliminate the time derivatives in favor of
space-derivatives of the extrinsic curvature in the right-hand side. By adding
terms proportional to the vector constraint Ci, the right-hand side of the
evolution equation for fkij reduces to a gradient of the extrinsic curvature.
The pair of evolution equations for Kij and fkij represents thus a first-order
reduction of wave equations with additional undifferentiated terms [10]:
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K̇ij = −αγkl∂lfkij + · · · (16)

ḟkij = −α∂kKij + · · · (17)

The constraints are

C ≡ −1
2
γijγkl{2(∂kfijl − ∂ifjkl) +KikKjl −KijKkl

+γmn[fikm(5fjln − 6fljn) + 13fiklfjmn

+fijk(8fmln − 20flmn]} = 0 (18)
Ci ≡ −γkl{γmn[Kik(3flmn − 2fmnl) −Kkmfiln]

+∂iKkl − ∂kKil} = 0 (19)
Ckij ≡ 2fkij − 4γlm(flm(iγj)k − γk(ifj)lm) − ∂kγij = 0 (20)

and are to be imposed only on the initial data. Here Cijk represent the de-
finition of the additional 18 first-order variables fkij and are obtained by
inverting (15) for γij,k.

The boundary equations, (9)–(12), take the following form when trans-
lated in terms of the EC variables [7]:

Gx
t = ḟx

k
k − ḟk

k
x + · · · (21)

Gx
x =

K̇ − K̇x
x

α
+ ∂z(fz

z
z + 2fz

x
x − fxz

x + 3fz
y

y − 2fy
y

z)

+∂y(fy
y

y + 2fy
x

x − fxy
x + 3fy

z
z − 2fz

z
y) + · · · (22)

Gx
y = −

K̇x
y

α
+ ∂z (fx

y
z − fz

y
x)

+∂y

(
fx

y
y − fy

y
x − 3fx

k
k + 2fk

k
x
)

+ · · · (23)

Gx
z = −K̇x

z

α
+ ∂y (fx

z
y − fy

z
x)

+∂z

(
fx

z
z − fz

z
x − 3fx

k
k + 2fk

k
x
)

+ · · · (24)

where . . . represent undifferentiated terms.
The EC equations (16)–(17) are symmetric hyperbolic (and thus strongly

hyperbolic as well [9]). With respect to the unit vector ξi ≡ γxi/
√
γxx which

is normal to the boundary x = x0 for the region x ≤ x0 there are 18 “sta-
tic” characteristic fields (the six γij , the six fy

i
j and the six fz

i
j) and 12

characteristic fields traveling at the speed of light, of which six are incoming:

−U j
i ≡ Kj

i − fx
i
j

√
γxx

(25)

and six are outgoing:
+U j

i ≡ Kj
i +

fx
i
j

√
γxx

. (26)
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All outgoing and static characteristic fields are assumed to be determined
by their initial values. The incoming fields, though, may be restricted by the
boundary equations. It is our next task to figure out which incoming fields
are constrained by the boundary equations, if any. Inverting for Kj

i and fx
i
j

in terms of ±U j
i one has

Kj
i =

1
2
(+U j

i + −U j
i ) , (27)

fx
i
j =

√
γxx

2
(+U j

i − −U j
i ) . (28)

One can thus see that (23) and (24) prescribe the time derivatives of −Ux
y

and −Ux
z in terms of the time derivatives of +Ux

y and +Ux
z , respectively. This

means that −Ux
y and −Ux

z cannot be assigned arbitrary boundary values in
order to generate a solution of the Einstein equations. Their values can be
calculated from knowledge of the outgoing fields +Ux

y and +Ux
z and previous

knowledge of other fields, by using (23) and (24) as evolution equations along
the boundary.

One can further see that (22) and (21) both involve the time deriva-
tive of the same combinations of incoming characteristic fields, explicitly:
−Uy

y + −Uz
z . In the first place, this means that −Uy

y + −Uz
z cannot be as-

signed arbitrary values along the boundary. Secondly, both equations also in-
volve the time derivative of the same combination of outgoing fields, namely:
+Uy

y + +Uz
z . Thus both equations taken together up to linear combinations

are equivalent to: (1) a boundary prescription for −Uy
y +−Uz

z , and (2) a con-
sistency condition for +Uy

y ++Uz
z . The boundary prescription for −Uy

y +−Uz
z

can be any linear combination of (22) and (21) except αGx
x +Gx

t /
√
γxx = 0,

in principle.
The combination αGx

x + Gx
t /

√
γxx = 0 can be taken as the consistency

condition for +Uy
y + +Uz

z . That this is a consistency condition means that if
the values of +Uy

y ++Uz
z were calculated by using it as an evolution equation

along the boundary, they should be identical to the values that would arise by
characteristic propagation from the initial slice. It also means that, in princi-
ple, αGx

x+Gx
t /

√
γxx = 0 can (but does not have to) be ignored as a boundary

equation. The question of whether or not to ignore αGx
x + Gx

t /
√
γxx = 0 as

a boundary equation remains an open problem at this time.
In all, thus, three out of the four components Gx

a = 0 prescribe boundary
values for three out of the six incoming fields. That leaves three incoming
fields for which the boundary values can be assigned arbitrarily without being
inconsistent with the Einstein equations. Up to linear combinations, they are
−Ux

x , −Uy
z and −Uy

y − −Uz
z . These are in one-to-one correspondence with

three components of the extrinsic curvature, namely Kx
x , Ky

z and Ky
y −Kz

z .
Of these, the last two can be identified with the transverse traceless part of
the extrinsic curvature.

One of the consequences of this analysis is that some widely used choices of
boundary conditions in numerical relativity are inconsistent with the Einstein
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equations along the boundary. For instance, the freezing boundary conditions,
where the time derivatives of all incoming fields are set to zero (−U̇ i

j = 0), are
clearly inconsistent with all four of (21)–(24), because of the presence of all
the undifferentiated terms. However, one could implement “Einstein bound-
ary conditions” for −Ux

y ,
−Ux

z and −Uy
y +−Uz

z by imposing, for instance, (23),
(24) and (21), and freezing boundary conditions on the remaining three in-
coming fields. As another instance, notice that (21)–(24) are also inconsistent
with imposing outgoing radiation conditions of the form −U i

j = +U i
j on all

incoming fields. There may be instances of outgoing radiation conditions that
are different from −U i

j = +U i
j because the term “outgoing radiation condi-

tions” is used somewhat loosely accross the field. In such cases, the form of
the “outgoing radiation conditions” must be contrasted to (21)–(24) in order
to find out whether they are consistent with the Einstein equations along the
boundary.

4 The Projection Gabe
b = 0 in Relation

to the Propagation of the Constraints

The discussion so far makes the point that the projection of the Einstein ten-
sor normally to a timelike boundary gives rise to a set of consistent boundary
conditions for the initial-boundary value problem of the Einstein equations.
Indeed, we have demonstrated that the assignment of arbitrary boundary
values to the incoming fields directly results in the failure to satisfy the
Einstein equations along the boundary surface. In the following, we establish
the greater consequences of imposing Gabe

b = 0 on the boundary. We will
make the point that, essentially, the use of Gabe

b = 0 as boundary conditions
for the fundamental variables is instrumental for the purposes of guarantee-
ing that the solution of the evolution equations satisfies the constraints at
any time.

4.1 The Case of the ADM Equations

Even though the ADM equations themselves are not strongly hyperbolic in
the standard sense – discussed in Subsect. 3.1 -, they imply a strongly hy-
perbolic system of evolution equations for the constraint quantities C, Ci as
functions of the point. These evolution equations for the constraints are ob-
tained by taking a time-derivative of C(γij ,Kij) and Ci(γij ,Kij), and using
the evolution equations (2)–(3) in order to eliminate γ̇ij and K̇ij in favor
of space derivatives of γij and Kij . The substitution allows for the high-
est derivative terms in the resulting equations to be expressible in terms of
first derivatives of the constraint quantities themselves, resulting in a closed
system for C, Ci having the form:
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Ċ = α∂iCi + · · · (29)
Ċi = α∂iC + · · · (30)

where . . . denote undifferentiated terms. This system of equations has two
characteristic speeds: 0 and ±α. With respect to the unit vector ξi =
γix/

√
γxx, normal to the boundary, the characteristic fields that travel with

zero speed are Cy and Cz. The characteristic fields that travel with non-zero
speed ±α are, respectively, ±C ≡ C ±Cx/

√
γxx. The characteristic constraint

+C is outgoing at the boundary, whereas −C is incoming at the boundary.
Because there is one incoming characteristic constraint, the initial-boundary
value problem of (29)–(30) requires one boundary prescription in order for a
unique solution to exist for every set of initial data. In other words, even if the
constraints are set to zero initially, they will not remain vanishing at all times
unless a “constraint-preserving” condition is imposed on the boundary. It is
at this crucial point that the initial value problem and the initial-boundary
value problem of the Einstein equations differ with respect to the propagation
of the constraints. In the case of the initial value problem, constrained initial
data uniquely pick out solutions of the evolution equations that satisfy the
constraints at all times. In the case of the initial-boundary value problem,
constrained initial data alone are not sufficient to pick out the solutions that
satisfy the constraints at all time, but constraint-preserving boundary data
must be specified as well.

The initial-boundary value problem of (29)–(30) is much more general
than one needs for the Einstein equations. In fact, (29)–(30) admit any initial
values, whereas the Einstein equations require vanishing initial values for
the constraint quantities. So, one is really interested in the initial-boundary
value problem of (29)–(30) with homogeneous initial values and boundary
conditions. The boundary prescription does not have to consist of setting
−C = 0, but could be setting −C as any linear combination of +C, Cy and Cz:
as the “static”and outgoing constraints are set to zero initially and propagate
towards the boundary, the linear combination is equivalent to prescribing a
vanishing value for the incoming constraint.

Our proposed boundary conditions for the fundamental variables are (9)–
(12), so our immediate interest is to figure out how they relate to the con-
straint quantities C and Ci. The relationship may not be expected to be direct,
because time derivatives of the fundamental variables occur in Gx

a, but do not
occur in C or Ci. But since we will eventually be interested only in the values
of the fundamental variables as they satisfy the evolution equations, we may
use the evolution equations to eliminate the time derivatives that occur in
Gx

a and figure out the relationship of whatever is left to the constraints. The
relationship will thus be one of equivalence modulo the evolution equations.

To start with, by simple inspection one can see that if the evolution equa-
tions for the extrinsic curvature are used to eliminate K̇x

y and K̇x
z from Gx

y

and Gx
z , the corresponding boundary equations reduce to naught. That is:

the boundary equations Gx
y = 0 and Gx

z = 0 are two of the six evolution
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equations and are not related to the constraints. But if one uses the evolu-
tion equations for the extrinsic curvature in order to eliminate K̇ and K̇x

x

from Gx
x, one is left with a series of terms that is exactly identical to the

scalar constraint C up to an overall minus sign. One may interpret this fact
as indicating that Gx

x = 0 is equivalent to imposing the vanishing of the
scalar constraint on the boundary. Finally, using the evolution equation for
the metric to eliminate γ̇ij from Gx

t one is left with a series of terms that is
identical to the combination Cx ≡ γxiCi up to an overall factor of α. This can
be interpreted as indicating that Gx

t = 0 is equivalent to imposing Cx = 0 on
the boundary. In summary:

Gx
t ∼ αCx (31)

Gx
y ∼ 0 (32)

Gx
z ∼ 0 (33)

Gx
x ∼ −C . (34)

One can thus see that by using either Gx
t = 0 or Gx

x = 0 as a boundary
condition for the fundamental variables, one is effectively imposing a consis-
tent boundary condition on the problem of propagation of the constraints,
of the form −C = +C or −C = −+C, respectively. In fact, one could use any
linear combination of Gx

t = 0 and Gx
x = 0 except Gx

t − (α/
√
γxx)Gx

x = 0 as
the boundary prescription necessary to enforce the propagation of the con-
straints. On the other hand, Gx

t − (α/
√
γxx)Gx

x = 0 in itself is equivalent to
+C = 0 on the boundary, which should be identically satisfied if all the con-
straints are set to zero on the initial slice. Thus Gx

t − (α/
√
γxx)Gx

x = 0 is not
really a boundary prescription but a consistency condition on the boundary.

4.2 The Case of the Einstein–Christoffel Formulation

In the case of the EC formulation, we have already shown that three of
the four equations Gx

a = 0 impose non-trivial boundary conditions on three
of the six incoming fields, whereas the fourth one represents a consistency
condition on an outgoing field. Here we develop the relationship of Gx

a = 0
to the constraints in the EC framework. The aim is to show that the three
non-trivial boundary equations of the set Gx

a = 0 are necessary and sufficient
for the purpose of picking a solution of the EC equations that satisfies the
constraints at all times.

We start by looking at the auxiliary system of propagation of the con-
straints. By taking a time derivative of the constraints (18)–(20) and using
the evolution equations (16)–(17) in order to eliminate time derivatives of
the fundamental variables we have explicitly:

Ċ = α∂iCi + · · · (35)

Ċi =
1
2
α∂k

(
∂iCkl

l − ∂lCki
l + ∂kCli

l − ∂kCil
l
)
− α∂iC + · · · (36)

Ċkij = . . . (37)
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where . . . denote undifferentiated terms. The system of auxiliary evolution
equations (35)–(37) for the 22 constraints has second-derivatives in the right-
hand side. However, it can be reduced to first differential order in the usual
manner, by adding new “constraint” variables that are space-derivatives of
the constraints, such as

Clkij ≡ 1
2

(∂lCkij − ∂kClij) . (38)

The introduction of such new constraint quantities enlarges the system (35)–
(37) to 40 variables in all, and casts it into the following form:

Ċ = α∂iCi + · · · (39)
Ċi = −α

(
∂iC + ∂kClki

l + ∂kCkil
l
)

+ · · · (40)

Ċkij = . . . (41)

Ċlkij = α (γki∂lCj + γkj∂lCi − γli∂kCj − γlj∂kCi) + · · · (42)

It is useful to point out that, if one chooses to do so, the new “constraint”
variables Clkij can be expressed in terms of the fundamental variables of the
EC system, in which case they read:

Clkij = ∂l(fkij − 2γnm(fnm(iγj)k − γk(ifj)nm))
−∂k(flij − 2γnm(fnm(iγj)l − γl(ifj)nm)) , (43)

and turn out to be identical to the “integrability conditions” 0 = 1/2(∂lγij,k−
∂kγij,l) .

The immediate benefit of introducing the first-order constraint variables
is that the system (39)–(42) is well posed in the sense that it is strongly
hyperbolic with characteristic speeds of 0 (multiplicity 34), +α (multiplic-
ity 3) and −α (multiplicity 3). This means that, with respect to the (outer)
boundary at x = x0, three characteristic constraint variables are incoming,
three are outgoing and all the others are “static”. The six non-static charac-
teristic constraints, which we denote by ±Zi (with + for outgoing and − for
incoming), are explicitly:

±Zx = Cx ± 1√
γxx

(
C + Ckx

xk + Cx
xk

k
)
, (44)

±Zy = Cy ± 1√
γxx

(
Ckx

yk + Cx
yk

k
)
, (45)

±Zz = Cz ±
1√
γxx

(
Ckx

zk + Cx
zk

k
)
. (46)

As in the ADM case, we are only interested in homogeneous initial and bound-
ary conditions for the propagation of the constraints. Because three charac-
teristic constraints are incoming at the boundary, the system of equations for
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the propagation of the constraints requires three (and only three) boundary
conditions, which can, for instance, take the form of linear combinations such
as −Zi = Lj

i
+Zj with coefficients Lj

i .
So the number of boundary conditions required by the propagation of

the constraints (39)–(42) is the same as the number of non-trivial boundary
equations Gx

b = 0 that impose restrictions on the boundary values of the fun-
damental variables of the EC equations (16)–(17). It is reasonable to suppose
that the three incoming constraints are related to the three components of
Gx

b that act as non-trivial boundary equations. Since Gx
b contain time deriv-

atives but the cosntraints do not, the relationship will be one of equivalence
modulo the evolution, as in the ADM case.

In principle, in order to find the relationship between Gx
b and the con-

straints one needs only to use the evolution equations (16)–(17) in order to
eliminate the time derivatives that appear in (21)–(24), and then regroup the
remainder into terms that are proportional to the constraints. The result is
as follows [7]:

Gx
t ∼ αCx , (47)

Gx
y ∼ Ckx

yk + Cx
yk

k , (48)

Gx
z ∼ Ckx

zk + Cx
zk

k , (49)
Gx

x ∼ C + Ckx
xk + Cx

xk
k . (50)

One can see that the constraints involved in (47)–(50) are the same as those
involved in (44)–(46), so we can express the right hand sides of (47)–(50) in
terms of the non-static characteristic constraints:

Gx
t ∼ α

γxi

2
(+Zi + −Zi) , (51)

Gx
y ∼

√
γxx

2
(+Zy − −Zy) , (52)

Gx
z ∼

√
γxx

2
(+Zz − −Zz) , (53)

Gx
x ∼

√
γxx

2
(+Zx − −Zx) . (54)

Of the four equations Gx
b = 0 one only needs three that are linearly inde-

pendent combinations of the three incoming constraints. There is a num-
ber of ways to pick the three. One way is already suggested by the initial-
boundary value problem of the EC equations in Subsect. 3.2, namely: to
set Gx

y = 0, Gx
z = 0 and aGx

t + bGx
x = 0 for any values of a and b except

αGx
x +Gx

t /
√
γxx = 0. This would be equivalent to setting

−Zi = Lj
i
+Zj . (55)

These are appropriate boundary conditions for the propagation of the con-
straints.
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The fourth equation in the set, namely αGx
x +Gx

t /
√
γxx = 0, is equivalent

to a linear relationship among purely outgoing constraints:

Bj+Zj = 0 . (56)

This equation is redundant to the problem of propagation of the constraints,
being entirely consistent with the prescription of vanishing initial data.

The point is thus made that three out of the four components of the pro-
jection Gabe

b = 0 are, in a sense, appropriate boundary conditions for the
propagation of the constraints and, at the same time, that they are appropri-
ate boundary conditions for the fundamental variables of the EC equations.
The boundary conditions that arise from Gabe

b = 0 can thus be interpreted
as being constraint-preserving.

5 Concluding Remarks

Summarizing, the projections Gabe
b = 0 have a significant role to play in the

initial-boundary value problem of the Einstein equations, which is hereby
illustrated in the case of the Einstein-Christoffel formulation. Just as the
constraints Gabn

b = 0 are necessary to weed out initial data that would lead
to a four-dimensional metric that is inconsistent with the Einstein equations,
the boundary equations Gabe

b = 0 screen out boundary data that would
flow in from outside in the form of the values of three incoming fields. By
picking the values of the three incoming fields involved so that Gx

t = Gx
y =

Gx
z = 0, for instance, one guarantees that the Einstein equations are satisfied

at the boundary. Then, as the incoming fields travel towards the interior,
they “carry”, in a sense, the vanishing of Gx

t , G
x
y ad Gx

z to the region where
the evolution equations are satisfied by construction. Since Gx

t , G
x
y and Gx

z

differ from the incoming constraints only by terms that are proportional to
the evolution equations, their vanishing is equivalent to the vanishing of the
constraints wherever the evolution equations are satisfied. Thus, by setting
Gx

t = Gx
y = Gx

z = 0 along the boundary, the constraints are enforced in the
interior.

Consider the case that the boundary value problem arises from a Cauchy
problem simply by choosing to restrict the problem to a bounded sector of the
Cauchy surface. That is: given a problem where the initial data completely
determine the solution, restrict attention to a bounded region of the initial
slice. The solution everywhere, inside and outside of the artificial boundary
created by the fiducial limits on the initial slice, is found entirely from global
initial data satisfying the constraints. But, starting from the Cauchy surface,
some of the constraints propagate into the artificial region from the values of
initial data given outside of the region of interest. The values of the incom-
ing fundamental variables along the artificial boundary must consequently
be “constrained”, since they arise from data that are initially constrained
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in the part of the Cauchy surface that lies outside of the fiducial boundary.
The realization of the constrained nature of the incoming fields takes place
in the form of the boundary equations Gabe

b = 0. We can thus think of
Gabe

b = 0 as a sort of time-like representation of the constraints, screening
out of the artificially bounded region the same information that the con-
straints would screen out in the sector of the Cauchy surface outside of the
fiducial boundary. By using Gabe

b = 0 as boundary conditions in an artifi-
cially bounded problem, one is thus simply substituting some Cauchy data
that one chooses to disregard with boundary data in an equivalent fashion.
By virtue of their relationship with the incoming constraints, the boundary
equations Gabe

b = 0 realize along the boundary the selection mechanism that
the constraints enforce on a Cauchy slice.

We conclude with a, perhaps far from complete, list of remarks and open
questions.

In the first place, the most outstanding open question is whether there is a
choice of linear combinations of the four components of Gabe

b = 0 as bound-
ary conditions that leads to a well-posed initial-boundary value problem in
the sense that the solution will depend smoothly on the initial data. The ques-
tion will remain wide open as long as the well-posedness of non-linear initial-
boundary value problems remains a relatively unaddressed issue in the field
of partial differential equations. Yet, in the linearization around Minkowski
space, some results concerning well-posedness of the initial-boundary value
problem with “Einstein boundary conditions” are available, as follows. It is
known that the linearized EC evolution equations with constrained initial
data and with Gx

t = Gx
y = Gx

z = 0 along the boundary can be trivially com-
plemented with three more boundary conditions (in order to prescribe the
remaining three incoming fields) in a way conducent to a well-posed initial-
boundary value problem [13].

It is also worthwhile pointing out that we have hereby proved that Gx
t =

Gx
y = Gx

z = 0 are identical to the “constraint preserving boundary conditions
of the Neumann type” as defined in [3] but as applied to the fully nonlinear EC
case (which are well-posed in the linearization). In fact, from this work it can
be deduced that among all “constraint-preserving” boundary conditions – by
which we mean all linear combinations of the form −Zi = Lj

i
+Zj -, a subset

are well posed (at least in the linearization), another subset are Einstein
boundary conditions – by which we mean Gabe

b = 0 up to linear combinations
-, and the prescription Gx

t = Gx
y = Gx

z = 0 lies at the intersection which is
strictly contained in both subsets. In terms of practicality, in all cases where
both prescriptions of boundary data coincide, writing them out as projections
of the Einstein tensor normal to the boundary surface greatly shortcuts the
cumbersome procedure associated with the constraint-preserving scheme. An
open question remains as to the meaning of the boundary conditions of the
form −Zi = Lj

i
+Zj that are not equivalent to projections of the Einstein
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tensor (such as the “well-posed constraint-preserving boundary conditions of
the Dirichlet type” of [3]).

It is important to emphasize that the significance of Gabe
b = 0 to the

initial-boundary value problem is independent of the formulation used. We
expect that a similar analysis and conclusions can be carried out in the case of
any strongly hyperbolic formulation of the Einstein equations. In fact, we have
applied this analysis to the case of a strongly hyperbolic first-order reduction
of the BSSN formulation [2] as well, obtaining very similar conclusions [6].

In closing, we speculate on the relevance of this work to numerical relativ-
ity. On the one hand, we have demonstrated that the prescription of boundary
conditions is intimately connected with the propagation of the constraints
in a fundamental way. This contradicts the – until recently – widespread
practice in numerical relativity of giving arbitrary prescriptions of boundary
data, shaped only by demands of numerical advantage. On the other hand,
it has been observed [10] that the control of constraint violations is crucial
for the purposes of extending the run time of numerical simulations of grav-
itational waves emitted by the collapse of binary black hole systems. The
use of Gabe

b = 0 as boundary conditions could thus play a role in improving
both the precision and the accuracy of numerical simulations. It can be con-
cluded that the use of Gabe

b = 0 as boundary conditions has the potential for
a significant and widespread impact in the future of the gravitational wave
program.
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Abstract. Combining deeper insight of Einstein’s equations with sophisticated
numerical techniques promises the ability to construct accurate numerical imple-
mentations of these equations. We illustrate this in two examples, the numerical
evolution of “bubble” and single black hole space-times. The former is chosen to
demonstrate how accurate numerical solutions can answer open questions and even
reveal unexpected phenomena. The latter illustrates some of the difficulties en-
countered in three-dimensional black hole simulations, and presents some possible
remedies.

1 Introduction

Extracting the full physical content from Einstein’s equations has proven to
be a difficult task. The complexity of these equations has allowed researchers
only a peek into the rich phenomenology of the theory by assuming special
symmetries and reductions. Computational methods, however, are opening
a new window into the theory. To realize the full utility of computational
solutions in exploring Einstein’s equations, several questions must first be
addressed. Namely, a deeper understanding of the system of equations and
its boundary conditions, the development and use of more refined numerical
techniques and an efficient use of the available computational resources.

In recent years, considerable advances have been made in some of these
issues, allowing for the analysis of complex physical systems which arguably
must be tackled numerically. In the present article we highlight some recent
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analytical and numerical techniques and apply them to two practical appli-
cations. The first application is the numerical evolution of bubble space-times
in five-dimensional Kaluza-Klein theory. We study their dynamical behavior,
the validity of cosmic censorship – in a set-up which a priori would appear
promising to give rise to violations of the conjecture – and reveal the exis-
tence of critical phenomena. As a second application, we discuss the numerical
evolution of single black hole space-times. Here we consider some analytical
and numerical difficulties in modeling these systems accurately. We discuss a
method to alleviate some of these problems, and present tests to demonstrate
the promise of this method.

2 Analytical and Numerical Tools

In the Cauchy formulation of General Relativity, Einstein’s field equations are
split into evolution and constraint equations. Numerical solutions are found
by specifying data on an initial space-like slice, subject to the constraints, and
by integrating the evolution equations to obtain the future development of
the data. Owing to finite computer resources, one is forced to use finite, and,
in practice, rather small computational domains to discretize the problem.
This raises several important issues.

The fundamental property for any useful numerical solution is that the so-
lution must converge to the continuum solution in the limit of infinite resolu-
tion. A prerequisite for a well-behaved numerical solution is a well-posed con-
tinuum formulation of the initial-boundary value problem. In certain cases,
the well-posed continuum problem can then be used to construct stable nu-
merical discretizations for which one can a priori guarantee convergence. In
particular, this can be achieved for linear, first-order, symmetric hyperbolic
systems with maximally dissipative boundary conditions [1–3]. This is briefly
discussed in Sect. 2.1, for a detailed description and an extension to numerical
relativity see Refs. [4–7].

The application of these ideas in general relativity is, naturally, more com-
plicated. First, Einstein’s equations are nonlinear and so it is much harder
to a priori prove convergence. However, a discretization that guarantees sta-
bility for the linearized equations should already be useful for the nonlinear
equations, especially for those systems with smooth solutions as expected for
the Einstein equations when written appropriately. This is because in a small
enough neighborhood of any given space-like slice, the numerical solution can
be modeled as a small amplitude perturbation of the continuum solution.

The constraint equations in general relativity bring additional compli-
cations and greatly restrict the freedom in specifying boundary and initial
data. This is illustrated and further discussed in Sect. 2.2. Secttion 2.3 dis-
cusses issues regarding the stability of the constraint manifold. The manifold
is invariant with respect to the flow defined by the evolution system in the
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continuum problem. Numerically, however, small errors in the solution aris-
ing from truncation or roundoff error may lead to large constraint violations
if the constraint manifold is unstable. Section 2.3 discusses a method for
suppressing such rapid constraint violations.

2.1 Guidelines for a Stable Numerical Implementation

A simple numerical algorithm, or “recipe,” can be followed to solve first
order, linear symmetric hyperbolic equations with variable coefficients and
maximally dissipative boundary conditions, for which stability can be guar-
anteed. It is based on finite difference approximations with spatial difference
operators that satisfy the summation by parts (SBP) property. This property
is a discrete analogue of integration by parts, which is used in the derivation
of energy estimates, a key ingredient for obtaining a well posed formulation
of the continuum problem. SBP allows to obtain similar energy estimates for
the discrete problem.

Employ Spatial Difference Operators that Satisfy SBP on the Com-
putational Domain. For the sake of simplicity, consider a set of linear,
first order symmetric hyperbolic equations in the one-dimensional domain
x ∈ (a, b) which is discretized with points xj = a + j∆x, j = 0 . . . N , where
∆x = (b− a)/N . Now let us introduce the discrete scalar product,

(u, v) := ∆x

N∑

i,j=0

σijuivj (1)

for some positive definite matrix with elements σij , which in the continuum
limit ∆x → 0 approaches the L2 scalar product 〈u, v〉 :=

∫ b

a
uv dx. At the

continuum level, the derivative operator d/dx and the scalar product satisfy
the rule of integration by parts, i.e. 〈du/dx, v〉 + 〈u, dv/dx〉 = uv|ba; in the
discrete case this is translated into a finite difference operator D which sat-
isfies (Du, v) + (u,Dv) = uv|ba and approaches d/dx in the continuum limit.
The simplest difference operator and scalar product satisfying SBP are

Du = (ui+1 − ui)/∆x , σ00 = 1
2 for i = 0

Du = (ui+1 − ui−1)/(2∆x) , σii = 1 for i = 1 . . . N − 1
Du = (ui − ui−1)/∆x , σNN = 1

2 for i = N
(2)

where the scalar product is diagonal: σij = 0 for i �= j. Higher order operators
satisfying SBP have been constructed by Strand [2]. Additionally, when deal-
ing with non-trivial domains containing inner boundaries, additional com-
plexities must be addressed to attain SBP, see [4]. The finite operator D is
then used for the discretization of the spatial derivatives in the evolution
equations, thus obtaining a semi-discrete system.
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Impose Boundary Conditions via Orthogonal Projections [3]. This
ensures the consistent treatment of the boundaries, guaranteeing the correct
handling of modes propagating towards, from and tangential to the bound-
aries. An energy estimate can be obtained for the semi-discrete system.

Implement an Appropriate Time Integration Algorithm. The result-
ing semi-discrete system constitutes a large system of ODE’s which can be
numerically solved by using a time integrator that satisfies an energy esti-
mate [8, 9].

Consider Adding Explicit Dissipation. It is well known that finite dif-
ference approximations do not adequately represent the highest frequency
modes on a given grid, corresponding to the shortest possible wavelengths
that can be represented on the grid. If the smallest spacing between points
is ∆, the shortest wavelength is λmin = ∆ with the corresponding frequency
kmax = 2π/λmin. These modes can, and often do, travel in the wrong direc-
tion. For this reason, it is sometimes useful to add explicit numerical dissipa-
tion to rid the simulation of these modes in a way that is consistent with the
continuum equation at hand. If finer grids are used, the effect of this dissipa-
tion becomes smaller and acts only on increasingly higher frequencies. The
dissipation operators are constructed such that discrete energy estimates, ob-
tained using SBP, are not spoiled. Explicit expressions for such dissipation
operators are presented in [4].

To summarize, beginning with a well-posed initial-boundary value prob-
lem, we mimic the derivation of continuum energy estimates for the discrete
problem using (1) spatial derivative operators satisfying summation by parts,
(2) orthogonal projections to represent boundary conditions and (3) choosing
an appropriate time integrator.

2.2 Constraint-Preserving Boundary Conditions

As discussed above, a numerical implementation of any system of partial dif-
ferential equations necessarily involves boundaries. Unless periodic boundary
conditions can be imposed, as is often the case for the evolution on compact
domains without boundaries, one deals with an initial-boundary value prob-
lem, and thus has to face the question of how to specify boundary conditions.
In theories that give rise to constraints, like general relativity, such conditions
must be chosen carefully to ensure that the constraints propagate.

As a very simple illustration, consider the 1d wave equation u,tt = u,xx

on the half line x > 0. Let us reduce it to first order form by introducing the
variables f ≡ u,x and g ≡ u,t − bu,x, with b a negative constant:

u,t = b u,x + g, (3)
g,t = −b g,x + (1 − b2)f,x , (4)
f,t = g,x + b f,x . (5)
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At the boundary x = 0, the system has two ingoing fields, given by u and
vin ≡ g + b f − f , and one outgoing field. However, the ingoing fields cannot
be given independently, as we see next. The constraint C ≡ f − u,x = 0
propagates as C,t = bC,x and so C is an ingoing field with respect to x = 0.
Therefore, we have to impose the boundary condition C = 0 which implies
the condition u,x = f on the main variables. We can replace this with a
condition that is intrinsic to the boundary by using the evolution equation
(3) in order to eliminate the x-derivative and obtain

u,t = b f + g . (6)

This equation provides an evolution equation for determining u at the bound-
ary, which guarantees that the constraint C = 0 is preserved throughout
evolution. It can be complemented by the Sommerfeld condition vin = 0.

This simple example gives just a glimpse of the different issues in-
volved in prescribing constraint-preserving boundary conditions. The case of
Einsteins’s field equations is more complicated; we refer the interested reader
to [10–22]. A major difficulty is the fact that, in general, constraint-preserving
boundary conditions do not have the form of maximal dissipative boundary
conditions, and for this reason it has proven to be difficult to find well posed
initial-boundary value formulations of Einstein’s equations that preserve the
constraints.

2.3 Dealing with “Too Many” Formulations. Parameters
via Constraint Monitoring

Formulations of the Einstein equations are often cast in symmetric hyperbolic
form by adding constraints to the evolution equations multiplied by parame-
ters or space-time functions. The symmetric hyperbolicity condition partially
restricts these parameters. However, considerable freedom in the formulation
exists in choosing these free parameters (see, for instance, [23]). Analytically,
when data are on the constraint surface, all allowed values for these parame-
ters are equally valid. Off the constraint surface, however, different values of
these parameters may be regarded as representing “different” theories. It is
no surprise then that numerical simulations are sensitive to the values chosen
for these parameters, as numerical data rarely are on the constraint surface.
Unfortunately, the parameters in current simulations are proving to be ex-
tremely sensitive. Relatively small variations in these parameters (within the
allowed range for a symmetric hyperbolic formulation) produce run times in
simulations that vary over several orders of magnitude, as measured by an
asymptotic observer.

Furthermore, the parameters are not unique. Values convenient for one
physical problem might be inappropriate in another. Recently, a method to
dynamically choose these parameters – promoted to functions of time – was
introduced that naturally adapts to the physical problem under study [24].
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Basically, one exploits the freedom in choosing these functions to control the
growth rate of an energy norm for constraint violations. Since this norm is
exactly zero analytically, this provides a guide to choosing the parameters
that will drive the solution to one that satisfies the constraints. This method
provides a practical solution to this problem of choosing parameters, although
it may not be the most elegant solution. Ideally, one would like to understand
how the growth rate of the solution depends on the these parameter values
in order to choose them appropriately. This would require sharp growth es-
timates, however, which are still unavailable. While further understanding is
gained in this front, this practical remedy can be of much help in present
simulations. We summarize here the essential ideas of this method.

Consider a system of hyperbolic equations with constraint terms, Cc, writ-
ten schematically as

u̇a =
∑

b

Ab(u, t,x)∂bua +Ba(u, t,x) +
∑

c

µacCc(u, ∂ju) , (7)

where ua, Ba and Cc are vector valued functions, and µac is a matrix (gener-
ally not square) that is a function of the space-time (Cc represents a vector
function of general constraint variables). The indices {a, b, c} range over each
element of the vector or matrix functions, while the indices {i, j, k} label
points on a discrete grid. We define an energy or norm of the discrete con-
straint variables as

N (t) =
1

2nxnynz

∑

c

∑

ijk

Cc(t)2 , (8)

where nx, ny, nz are the number of points in each direction. The grid indices
{i, j, k} are suppressed to simplify the notation. The time derivative of the
norm can be calculated using (7)

Ṅ = Ihom + Tr(µIµ) , (9)

and therefore can be known in closed form provided the matrix valued sums

Ihom =
∑

ijk

∑

a,b

Ca

nxnynz

[
∂Ca

∂ub
+
∑

k

∂Ca

∂Dkua
Dk

]

×
[
∑

c

(AcDcub) +Bb

]
(10)

Iµ
bc =

∑

ijk

∑

a

Ca

nxnynz

×
[
∂Ca

∂ub
+
∑

k

∂Ca

∂Dkub
Dk

]
Cc (11)
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are computed during evolution. Here Di is the discrete derivative approxi-
mation to ∂i. We then use the dependence of the energy growth on the free
constraint-functions to achieve some desired behavior for the constraints, i.e.,
solving (9) for µac. For example, if we choose1

Ṅ = −aN , a > 0 , (12)

any violation of the constraints will decay exponentially

N (t+ �t) = N (t)e−a
t . (13)

As discussed in [24], one good option among many others seems to be choosing
a tolerance value, T , for the norm of the constraints that is close to the initial
discrete value, and solving for µac such that the constraints decay to this
tolerance value after a given relaxation time. This can be done by adopting
an a such that after some time τ ≡ na�t the constraints have the value T .
Replacing N (t+ �t) by T in equation (13) and solving for a gives

a(t) = −1
τ

ln
(

T

N (t)

)
. (14)

If one then solves

Ṅ = −aN = Ihom + trace(µ× Iµ) (15)

for µ, with a given by (14), the value of the norm N (t + τ) should be T ,
independent of its initial value. Therefore, (15) serves as a guide to formulate
a practical method to choose free parameters in the equations with which
the numerical solution behaves well with respect to the satisfaction of the
constraints. Naturally, if one deals, as it is often the case, with more than
one free parameter, (15) must be augmented with other conditions to yield
a unique solution. This extra freedom is actually very useful in preventing
large time-variations in the parameters that are sometimes needed in order to
keep the constraints under control. These large variations do not represent a
fundamental problem but a practical one, due to the small time stepping that
they require in order to keep errors due to time integration reasonably small.
One way to prevent this is by using this extra freedom to pick up the point in
parameter space that not only gives the desired constraint growth, but also
minimizes the change of parameters between two consecutive timesteps.

Rather than including the full details on the particular way we have im-
plemented the method, we describe here a simple example to illustrate its
application. Assume, for instance, that within a particular formulation only
two free functions, {κ, ω}, are employed. Equation (15) formally evaluates to

1There is a slight abuse of notation here, in the sense that a does not denote an
index, as before. Similarly, the subscript in na indicates that the quantity is related
to a through (14).
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Ṅ = −aN = Ihom + κIκ + ωIω . (16)

Now, we exploit the freedom in the free functions to adjust the rate of change
of the energy N if the values of {Ihom, Iκ, Iω} are known. In practice, these
are easily obtained during evolution. Once these are known, (16), coupled
to the requirement that {κ, ω} vary as little as possible from one evaluation
to another, results in a straightforward strategy to evaluate preferred values
of the free parameters. This is done at a single resolution “test” run and,
through interpolation in time, continuum, a priori defined parameters which
keep the constraints under control for the given problem are obtained. De-
pending on the formulation of the equations, the free parameters might have
to satisfy some conditions in order for symmetric hyperbolicity to hold, which
can restrict the range of values these parameters can take. Nevertheless, even
within a restricted window, the technique allows one to adopt the most con-
venient values these parameters should have for the problem at hand.

3 Applications

We now present applications of the techniques previously discussed. The goal
is to illustrate how well-resolved simulations can indeed serve as a powerful
tool to understand particular problems. To this end we have chosen a problem
found in higher dimensional general relativity. A second application is that
of the simulation of single black hole space-times, where the issue of the a
priori lack of a preferred formulation is illustrated.

3.1 Bubble Space-Times

As a first application we concentrate on the study of bubble space-times and
elucidate the dynamical behavior of configurations with both positive and
negative masses and their possible connection to naked singularities. Bubble
space-times have been studied extensively within five-dimensional Kaluza-
Klein theory. These are five-dimensional space-times in which the circum-
ference of the “extra” dimensions shrinks to zero on some compact surface
referred to as the “bubble”. These bubbles were initially studied by their
relevance in the quantum instability of flat space-time [25], as bubbles can
be obtained via semi-classical tunneling from it. They were later extended to
include data corresponding to negative energy configurations (at a moment
of time symmetry) [26, 27]. As mentioned, among the reasons for consider-
ing negative energy solutions is that naked singularities are associated with
them. Therefore, these solutions are attractive tests of the cosmic censorship
conjecture. Additionally, bubble space-times can also be obtained by double-
Wick rotation of black strings, whose stability properties (or lack thereof)
have been the subject of intense scrutiny in recent years. These features
make bubble space-times both interesting and relevant for gravity beyond



Recent Analytical and Numerical Techniques 231

four-dimensions, and thus attention has been devoted to fully understand
their behavior. As we will see, even when the “analytical” study of the prob-
lem is greatly simplified by symmetry assumptions, many lingering questions
remain and numerical simulations provided a viable way to shed light into
them. Furthermore, these simulations were also key to ‘digging out’ a few
unexpected features of the solution.

In order to obtain a complete description of the dynamical behavior of
these space-times, a numerical code, implementing Einstein equations in 5D
settings, and capable of handling the possibly strong curvature associated
need be constructed. Fortunately, the assumption of a SO(3) × U(1) sym-
metry simplifies the treatment of the problem, which can be reduced to a
1+1 manifold. This, in turn, renders the problem quite tractable by the cur-
rently available computational resources, though as we will see, considerable
care must be placed at both analytical and numerical levels for an accurate
treatment of the problem.

Initial Data. We consider a generalization of the time symmetric family of
initial data presented in [27]. We start with a space-time endowed with the
metric

ds2 = −dt2 + U(r)dz2 +
dr2

U(r)
+ r2dΩ2 , (17)

where dΩ2 = dϑ2+sin2 ϑdϕ2 is the standard metric on the unit two-sphere S2

and U(r) is a smooth function that has a regular zero at some r = r+ > 0,
is everywhere positive for r > r+ and converges to one as r → ∞. The
coordinate z parameterizes the extra dimension S1 which has the period
P = 4π/U ′(r+). The resulting space-time {t, z, r ≥ r+, ϑ, ϕ} constitutes a
regular manifold with the topology R×R2×S2. The bubble is located where
the circumference of the extra dimension shrinks to zero, that is, at r = r+.

Additionally, we consider the presence of an electromagnetic field of the
form

1
2
Fµν dx

µ ∧ dxν = dγ(r) ∧ dz , (18)

where γ(r) is a smooth function of r that converges to zero as r → ∞.
The symmetries of the problem would also allow for a non-trivial electric
component of the field. However, it is not difficult to show that Maxwell’s
equations imply that such a field necessarily diverges at the location of the
bubble. For this reason, in the following, we only consider the case of vanishing
electric field.

In this article, we consider initial data with

γ(r) = k(r−n
+ − r−n) , (19)

where k is an arbitrary constant and n an integer greater than one. This
field generalizes the ansatz considered in [27], where only the case n = 2
was discussed, and allows for different interesting initial configurations. In
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the time-symmetric case, initial data satisfying the Hamiltonian constraint
obeys

U(r) = 1 − m

r
+

b

r2
− k̃2

r2n
, (20)

with k̃ ≡ kn/
√

(n− 1)(2n− 1) and free integration constants m and b. Here,
the parameter m is related to the ADM mass via MADM = m/4. The fact
that the bubble be located at r = r+ requires that 0 = U(r+) = 1−m̄+b̄−k̄2,
where m̄ ≡ m/r+, b̄ ≡ b/r2+, k̄ ≡ k̃/rn

+ . We also require

0 < r+U
′(r+) = 2 − m̄+ 2(n− 1)k̄2 (21)

and avoid the conical singularity at r = r+ by fixing the period of z to
P = 4π/U ′(r+). It can be shown that the initial acceleration of the bubble
area A with respect to proper time is given by

Ä = 8π
[
1 − m̄− 4k̄2

3
(n− 1)(n− 2)

]
. (22)

For n = 2, as discussed in [28], this implies that negative mass bubbles start
out expanding (the initial velocity of the area is zero since we only consider
time-symmetric initial data), while for large enough positive mass the bubble
starts out collapsing. In the vacuum case, our numerical simulations suggest
that initially collapsing bubbles undergo complete collapse and form a black
string. In the non-vacuum case however, the strength of the electromagnetic
field can modify this behavior completely. We will see that for small enough
k the bubble continues to collapse whereas when k is large the bubble area
bounces back and expands. Interesting behavior is obtained at the critical
value for k which divides the phase space between collapsing and expanding
solutions.

For n > 2 it is possible to obtain initial configurations with negative mass
and negative initial acceleration [29]. This can potentially give rise to a col-
lapsing bubble of negative energy, and thus to a naked singularity. However,
our numerical results [29] suggest that cosmic censorship is valid: The bubble
bounces back and starts out expanding.

Equations. In order to study the time evolution of the initial data sets given
on a t =const. slice of the metric (17) and the electromagnetic field (18), it
is convenient to introduce a new radial coordinate R = R(r) which facilitates
the specification of regularity conditions at the bubble location. This new
coordinate is defined by

R(r) =
√
r2 − r2+ , r > r+ . (23)

The metric (17) now reads

ds2 = −α2dt2 + e2adR2 +
R2

r2+ +R2
e2bdz2 + (r2+ +R2)e2cdΩ2 , (24)
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with α = 1, e−2a = e2b = (r2+ + R2)U(R)/R2, c = 0. Since U(R) = const. ·
(R/r+)2 +O(R4) near R = 0, and U(R) converges to one in the asymptotic
region, a and b are regular functions. An explicit example is the initial data
corresponding to the zero mass Witten bubble [25] where U = 1 − (r+/r)2

and thus a = b = 0. When studying the time evolution of the initial data
sets discussed above, we consider the metric (24) where α, a, b and c are
functions of t and R. As we will see, the coordinate R is well suited for
imposing regularity conditions at the bubble location since (R, z) represent
polar coordinates near the bubble, R = 0 being the center, and z assuming
the role of the angular coordinate. In order to avoid a conical singularity, z
must have the period 2πr+ea−b. For this to be constant we need to impose
the boundary condition a(t, 0) − b(t, 0) = const. at R = 0.

Similarly, the electromagnetic field (18) is written in the form

1
2
Fµν dx

µ ∧ dxν =
R√

r2+ +R2
eb (πγdt+ dγdR) ∧ dz , (25)

where the functions πγ and dγ depend on t and R and satisfy πγ = 0 and
dγ = e−b∂rγ at the initial time.

We choose the following gauge condition for the lapse

log(α) = a+ λ(b+ 2c) , (26)

with a parameter λ which, in our simulations, is either zero or one. For
λ = 1 the resulting gauge condition is strongly related to the densitized
lapse condition often encountered in hyperbolic formulations of Einstein’s
equations: Indeed, the square root of the determinant of the four metric
belonging to (24) is given by

√
g(4) = ea+b+2cR

√
r2+ +R2 sinϑ, so (26) sets

α equal to the square root of the determinant of the four metric but divides
the result by the factor R

√
r2+ +R2 sinϑ which is singular at the bubble, at

the poles ϑ = 0, π/2 and in the asymptotic region. For λ = 0, the condition
(26) implies that the two-metric −α2dt2 + e2adR2 is in the conformal flat
gauge. As we will see, the principal part of the evolution equations is governed
by the d’Alembertian with respect to this metric. Since the two-dimensional
d’Alembertian operator is conformally covariant, the resulting equations are
semi-linear in that case. In particular, this implies that the characteristic
speeds do not depend on the solution that is being evolved.

The field equations resulting from the five-dimensional Einstein-Maxwell
equations split into a set of evolution equations and a set of constraints. The
evolution equations can be written as
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Ä = e−λF
[
(A′ + 2G′)eλ(2B+F )

]′
− 3(λ− 1)(C ′ +G′)2e2λB − (λ+ 1)V

+2λȦḂ−λ(λ+1)Ḃ2−3(λ+1)Ċ2+G
[
(1 − λ)π2

γ − (1 + λ)e2λBd2
γ

]
, (27)

B̈ = e(λ−1)B−(λ+2)F
[
B′e(λ+1)B+(λ+2)F

]′
+

3r2+ + 2R2

(r2+ +R2)2
e2λB

+ (λ− 1)Ḃ2 − 2V , (28)

C̈ = e(λ−1)B−F
[
(C ′ +G′)e(λ+1)B+F

]′
− V + (λ− 1)ḂĊ,

+
2G
3
[
π2

γ − e2λBd2
γ

]
, (29)

π̇γ = eλB−2(C+G)
[
dγe

λB+2(C+G)
]′

+ (λḂ − 2Ċ)πγ , (30)

ḋγ =

√
r2+ +R2

R
e−(B−2C)



πγ
R√

r2+ +R2
eB−2C




′

− (Ḃ − 2Ċ)dγ , (31)

where we have set A = a + λb + 2(λ + 1)c, B = b + 2c, C = c and G =
log(r2+ +R2)/2, F = log(R) +G and V = e2(A−3C)/(r2+ +R2). Here, and in
the following, a dot and a prime denote differentiation with respect to t and
R, respectively. The evolution equations constitute a hyperbolic system on
the domain R > 0.

The constraints are the Hamiltonian and the R component of the mo-
mentum constraint, given by C = 0, CR = 0, where

C = e(λ−1)B−(λ+2)F
[
e(λ+1)B+(λ+2)FB′

]′

+
[

3r2+ + 2R2

(r2+ +R2)2
− (B′ + F ′)(A′ + 2G′) + 3(C ′ +G′)2

]
e2λB

− V − (Ȧ− λḂ)Ḃ + 3Ċ2 +G
[
π2

γ + e2λBd2
γ

]
, (32)

CR = eA−2C
[
e−(A−2C)Ḃ

]′
− (B′ + F ′)

[
Ȧ− (λ+ 1)Ḃ

]

+ 2(C ′ +G′)(3Ċ − Ḃ) + 2Gπγdγ . (33)

Regularity Conditions. The evolution equations contain terms proportional
to e−F which diverge like 1/R near R = 0, and therefore, regularity conditions
have to be imposed at R = 0. This is achieved by demanding the boundary
conditions

A′ = B′ = C ′ = πγ = 0 at R = 0 . (34)

Assuming that the fields are smooth enough near R = 0, it then follows that
the right-hand side of the evolution equations is bounded for R → 0. Next,
as discussed above, the avoidance of a conical singularity at R = 0 requires
that A − (λ + 1)B = a − b must be constant at R = 0. We show that this
condition is a consequence of the evolution and constraint equations, and
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of the regularity conditions (34). Using the evolution equations in the limit
R → 0 and taking into account the conditions (34), we find

∂t

{
e(1−λ)B

[
Ȧ− (λ+ 1)Ḃ

]}∣∣∣
R=0

= −(λ+ 1)e(1−λ)BC
∣∣∣
R=0

. (35)

This means that if the Hamiltonian constraint is satisfied at R = 0 (or in
the case that λ = −1 even if the constraints are violated), the condition
A − (λ + 1)B|R=0 =const. will hold provided that the initial data satisfies
Ȧ − (λ + 1)Ḃ|R=0 = 0. Next, we analyze the propagation of the constraint
variables C and CR and show that the regularity conditions (34) and the evo-
lution equations imply that the constraints are satisfied at each time provided
they are satisfied initially.

Propagation of the Constraints. First, we notice that the vanishing of the
momentum constraint requires that Ȧ − (λ + 1)Ḃ|R=0 = 0 because of the
factor F ′ which diverges like 1/R near R = 0 in the definition of CR. This is
precisely the condition a(t, 0)− b(t, 0) = const. discussed above. However, for
this condition to hold, we first have to show that the momentum constraint
actually vanishes. In order to see this, we regularize the constraint variables
and define C̃ = eF C, C̃R = eFCR. Now the regularity conditions (34) imply
that C̃R is regular and that C̃ vanishes at R = 0. As a consequence of the
evolution equations and Bianchi’s identities, the constraint variables obey the
following evolution system

∂tC̃ = e(λ−1)B∂R

[
e(λ+1)B C̃R

]
+ (3λ− 1)ḂC̃ , (36)

∂tC̃R = e−(λ+1)B−λF∂R

[
e(λ+1)B+λF C̃

]
+ (λ− 1)ḂC̃R (37)

which is regular at R = 0. Defining the energy norm

E(t) =
1
2

∫ ∞

0

(
e2B+λF C̃2 + e2(λ+1)B+λF C̃2

R

)
dR , (38)

taking a time derivative and using the equations (36), (37) we obtain

d

dt
E = e2(λ+1)B+λF C̃C̃R

∣∣∣
∞

0
+ λ

∫ ∞

0

Ḃ
(
3e2B+λF C̃2 + 2e2(λ+1)B+λF C̃2

R

)
dR .

(39)
The boundary term vanishes because of the regularity conditions at R = 0
and under the assumption that all fields fall off sufficiently fast as R → ∞.
If Ḃ is smooth and bounded, we can estimate the integral on the right-hand
side by a constant C times E , and it follows that E(t) ≤ eCtE(0). This shows
that if the constraints are satisfied initially, they are also satisfied for all t > 0
for which a smooth solution exists. In the gauge where λ = 0 we even obtain
the result that the norm of the constraints cannot grow in time.

To summarize, the boundary conditions (34) imply that the constraints
C = 0, CR = 0 and Ȧ− (λ+ 1)Ḃ

∣∣∣
R=0

= 0 are preserved throughout evolu-
tion.
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Outer Boundary Conditions. For numerical computations, our domain ex-
tends from R = 0 to R = Rmax for some Rmax > 0. Now we have to replace
the estimate (39) by the estimate

d

dt
E = e2(λ+1)B+λF+A0 C̃C̃R

∣∣∣
Rmax

0
+ CE , (40)

and it only follows that the constraints are zero if we control the boundary
term at R = Rmax. For this reason, we impose the momentum constraint,
CR = 0, at R = Rmax. This condition results in an evolution equation for B′

at the outer boundary. We combine this condition with the Sommerfeld-like
conditions at R = Rmax,

Ȧ+A′ = 0, Ċ + C ′ = 0, πγ + dγ = 0 . (41)

Numerical Implementation. Next, we discuss the numerical implemen-
tation of the above constrained evolution system. In order to apply the dis-
cretization techniques discussed in Sect. 2 we first recast the evolution equa-
tions into first order symmetric hyperbolic form by introducing the new vari-
ables πA = Ȧ, πB = Ḃ, πC = Ċ and dA = A′ + 2G′, dB = B′, dC = C ′ +G′.
The resulting first order system is then discretized by the method of lines.
Let us first discuss the spatial discretization which requires special care at
R = 0 because of the coefficients proportional to 1/R that appear in the
evolution equations. To this end, consider the following family of toy models

π̇ = R1−n∂R(Rn−1d), (42)
ḋ = ∂Rπ , (43)

where R > 0 is the radial coordinate, and n = 1, 2, 3, ... We impose the
regularity condition d = 0 at R = 0, which, for sufficiently smooth fields,
implies that π̇ = n∂Rd at R = 0, and assume that the fields vanish for R
sufficiently large. The toy model (42–43) corresponds to the n-dimensional
wave equation for spherically symmetric solutions. The principal part of our
evolution system has precisely this form near R = 0, where n is given by λ+1,
λ + 3, 2, 1 for the evolution equations for πA, πB, πC and πγ , respectively.
The system (42–43) admits the conserved energy

E =
1
2

∫ ∞

0

Rn−1
(
π2 + d2

)
dR . (44)

A second order accurate and stable numerical discretization of the system
(42–43) can be obtained as follows: We assume a uniform grid Rj = j∆R,
j = 0, 1, 2..., approximate the fields π and d by grid functions πj = π(R =
Rj), dj = d(R = Rj), and consider the semi-discrete system

π̇j = R1−n
j D0(Rn−1d)j for j > 0 and π̇0 =

n

∆R
d1 , (45)

ḋj = D0πj for j > 0 and ḋ0 = 0 , (46)
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where for a grid function uj , (D0u)j = (uj+1 − uj−1)/(2∆R) is the second
order accurate centered differencing operator. It is not difficult to check that
this scheme preserves the discrete energy

Ediscrete =
∆R

2

∞∑

j=1

Rn−1
j

(
π2

j + d2
j

)
+
∆R

4n
Rn−1

1 π2
0 (47)

which proves the numerical stability of the semi-discrete system. Finally, we
use a third order Runge–Kutta algorithm in order to perform the integration
in time. By a theorem of Levermore [9], this guarantees the numerical stability
of the fully discrete system for small enough Courant factor.

We apply these techniques for the discretization of our coupled system.
The outer boundary conditions are implemented by a projection method. Of
course, the resulting system is much more complicated than the simple toy
model problem presented above, and we have no a priori proof of numerical
stability. Nevertheless, we find the above analysis useful as a guide for con-
structing the discretization. Our resulting code is tested by running several
convergence tests, and its accuracy is tested by monitoring the constraint
variables C and CR and the quantity Ȧ− (λ+ 1)Ḃ

∣∣∣
R=0

= 0.

Results. Here we discuss the results for the numerical evolution of the initial
data defined by (17–20). We start by reviewing the evolution of the initially
expanding bubbles and the initially collapsing negative mass bubbles [29] and
then focus on the initially collapsing positive mass bubbles.

Brill-Horowitz Initially Expanding Case. The Brill-Horowitz initial data (n =
2) in the case of vanishing electromagnetic field is evolved. The bubble area
A as a function of the proper time τ at the bubble is shown in Fig. 1 for
different values of the mass parameter m. As expected, the lower the mass
of the initial configuration, the faster the expansion. Empirically, and for the
parameter ranges used in our runs, we found that at late times the expansion
rate obeys

Ȧ

A
≈ 2 − m̄

r+(τ = 0)
, (48)

where a dot denotes the derivative with respect to proper time τ . In particular
this approximation is valid for the bubble solution exhibited by Witten [25]
which describes the time evolution in the case m̄ = 0.

Collapsing Negative Mass Case. We here restrict to cases with negative
masses that start out collapsing. Interestingly enough we find that even when
starting with large initial negative accelerations, which in turn make the bub-
ble shrink in size to very tiny values, it bounces back without ever collapsing
into a naked singularity. As an example, Fig. 2 shows the bubble’s area versus
time for different values of n and k. The initially collapsing bubbles decrease
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m = 0.8

Fig. 1. Bubble area vs. proper time at the bubble. In this and the following plots,
we set r+ = 1. The figure shows five illustrative examples of bubbles whose initial
acceleration is positive. As it is evident, the expansion of the bubble continues and
the difference is the rate of the exponential expansion. The relative error in these
curves, estimated from the appropriate Richardson extrapolated solution in the
limit ∆ → 0, is well below 0.001%

0 0.1 0.2 0.3 0.4 0.5

τ
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ln(A)

n = 6, k = 2.9

n = 6, k = 3.9

n = 20, k = 10.9

Fig. 2. Bubble area vs. proper time at the bubble. The figure shows three illus-
trative examples of bubbles with negative mass (m = −0.1 each) whose initial
acceleration is negative. As it is evident, the collapse of the bubble is halted and
the trend is completely reversed. The error in these curves is estimated to be well
below 0.001%

in size in a noticeable way but this trend is halted and the bubbles bounce
back and expand. Although we have not found a simple law as that in (48),
clearly the bubbles expand exponentially fast. Therefore, it seems not to be
possible to “destroy” the bubble and create a naked singularity. This situation
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is somewhat similar to the scenarios where one tries to “destroy” an extremal
Reissner-Nordström black hole by attempting to drop into it a test particle
with high charge to mass ratio. There, the electrostatic repulsion prevents
the particle from entering the hole [30].

Brill-Horowitz Initially Collapsing Case. Next, we analyze the Brill-Horowitz
initial data for the case in which the bubble is initially collapsing (notice that
for n = 2 this implies that the ADM mass is positive). While our numerical
simulations reveal that in the absence of the gauge field such a bubble contin-
ues to collapse, we also show that when the gauge field is strong enough, the
bubble shrinks at a rate which decreases with time and then bounces back.

Obviously, if the collapse trend were not halted, a singularity should form
at the origin. Since the ADM mass is positive, one expects this singularity to
be hidden behind an event horizon, and one should obtain a black string. In
fact, for the solutions which are initially collapsing and which have vanishing
gauge field, we observe the formation of an apparent horizon. Furthermore,
we compute the curvature invariant quantity Ir4AH at the apparent horizon
(as discussed in [31]), where I = RabcdR

abcd is the Kretschmann invariant and
rAH the areal radius of the horizon. For a neutral black string, this invariant
is 12. Figure 3 shows how this value is attained after the apparent horizon
forms for representative vacuum cases (with m = 1.1 and m = 1.99) this,
together with the formation of apparent horizons, provides strong evidence
for the formation of a black string.

0 2 4 6 8 10

t

1

1.2

1.4

1.6

I0N

m = 1.1
m= 1.99

Fig. 3. Rescaled Kretschmann invariant I0N ≡ Ir4
AH/12 vs. asymptotic time for

m = 1.1 (solid line) and 1.99 (dashed line). The first non-zero values of the lines
mark the formation of the apparent horizon. After some transient period, both lines
approach the value of 1 suggesting a black string has formed
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As mentioned, for strong enough gauge fields, the previously described
dynamics is severely affected. Fig. 4 (left panel) shows the bubble area vs.
proper time for different values of k. For large values the bubble “bounces”
back and expands while for small ones the bubble collapses. There is a natural
transition region separating these two possibilities. Tuning the value of k one
can reveal an associated critical phenomenon, the ‘critical solution’ being a
member of the family of static solutions given by

ds2 = −V (r)dt2 +
V (r)
U(r)

dr2 +
U(r)
V (r)2

dz2 + r2V (r)dΩ2, (49)

1
2
Fµν dx

µ ∧ dxν = ±1
2

√
3r−(r+ − r−)

dr ∧ dz

r2V (r)2
, (50)

where V (r) = 1 − r−/r and U(r) = 1 − r+/r. The parameters r− and r+
(> r−) are related to the period of the z coordinate and to the ADM mass
via P = 4πr+(1 − r−/r+)3/2 and MADM = r+/4 . Since the quantities P
and MADM are conserved, the member of the family of static solutions the
dynamical solution approaches can be determined a priori from the initial
data.

Figure 4 (right panel) displays the time T defined as the length of asymp-
totic time during which the bubble’s area stays within 1% of the minimum
value attained when the bubble bounces back. This is a measure of how long
the solution stays close to the static solution as a function of the parameter
k. Empirically, we find the law

T = −r+Γ log |k − kc| + T1 , (51)

Fig. 4. Left Panel. Area values vs. proper time at the bubble for different values of
k and m = 1.1. By tuning the value of k appropriately, the amount of time that the
area remains fairly constant can be extended for as long as desired. Right Panel.
The time T which is a measure of how long the solution stays close to the static
solution vs. the logarithm of the difference between the parameter k and its critical
value. A linear interpolation gives the value γ ≈ 1.2
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with a parameter Γ ≈ 1.2 that does not seem to depend on the family
of initial data chosen. This universality property is reinforced by the linear
stability analysis of the critical solutions (49,50) performed in [32] where we
prove that each solution has precisely one unstable linear mode growing like
exp(Ωt/r+) with a universal Lyapunov exponent of Ω ≈ 0.876. This explains
the law (51) with Γ = 1/Ω ≈ 1.142.

3.2 Black Holes

As one of the applications that we have chosen to illustrate the use of the
techniques previously discussed we consider here the evolution of single non-
spinning black holes. Even when the data provided correspond to spherically
symmetric and vacuum scenarios, as we will see, obtaining a long term stable
implementation is not a trivial task. For additional information, and a more
general treatment, we refer the reader to [33].

Formulation. We adopt the symmetric hyperbolic family of formulations
introduced in [34]. This is a first order formulation whose evolved variables
are given by {gij ,Kij , dkij , α,Ai} with gij the induced metric on surfaces at
t =const., Kij the extrinsic curvature, dkij are first derivatives of the metric,
dkij = ∂kgij , α is the lapse, and Ai are normalized first derivatives of the
lapse, Ai = α−1∂iα.

The Einstein equations written in this formulation are subject to the
physical constraints, the Hamiltonian and momentum constraints, as well
as non-physical constraints, which arise from the variable definitions. The
non-physical constraints are

CAi
= Ai −N−1∂iN = 0 , Ckij = dkij − ∂kgij = 0 , Clkij = ∂[ldk]ij = 0 .

(52)
The constraints are added to the field equations and the space-time constraint-
functions {γ(t), ζ(t), η(t), χ(t), ξ(t)} are introduced as multiplicative factors
to the constraints. While these quantities are sometimes introduced as para-
meters, we extend them to time-dependent functions. For simplicity in this
work, we set ζ = −1. Requiring that the evolution system is symmetric hy-
perbolic imposes algebraic conditions on these factors, and they are not all
independent. If we require that all the characteristic speeds are “physical”
(i.e. either normal to the spatial hypersurfaces or along the light cone), then
we obtain two symmetric hyperbolic families. One family has a single free
parameter, χ(t),

Single constraint-function system






γ = −1
2

ζ = −1
η = 2
ξ = −χ

2
χ �= 0

(53)
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and another symmetric system with two varying constraint-functions
{η(t), γ(t) �= −1/2}:

Two constraint-function system






ζ = −1
χ = −γ(2−η)

1+2γ

ξ = −χ
2 + η − 2

γ �= − 1
2

η

(54)

Initial Data and Boundaries. Initial data for a Schwarzschild black hole
are given in ingoing Eddington-Finkelstein coordinates. The shift βi will
be considered an a priori given vector field while the lapse is evolved to
correspond to the time harmonic gauge with a given source function. This
gauge source function is taken from the exact solution, such that in the high-
resolution limit α = (1 + 2M/r)−1/2.

Black hole excision is usually based on the assumption that an inner
boundary (IB) can be placed on the domain such that information from this
boundary does not enter the computational domain. This requirement places
strenuous demands on cubical excision for a Schwarzschild black hole in Kerr-
Schild, Painlevé–Gullstrand or the Martel–Poisson [35] coordinates: the cube
must be inside 0.37M in each direction. This forces one to excise very close
to the singularity, where gradients in the solution can become very large, re-
quiring very high resolution near the excision boundary to adequately resolve
the solution. This requirement follows directly from the physical properties
of the Schwarzschild solution in these coordinates, and is independent of the
particular formulation of the Einstein equations [6].

With our current uniform Cartesian code, however, we do not have enough
resolution to adequately resolve the Schwarzschild solution near the singu-
larity. Thus, we place the inner boundary inside the event horizon, but out-
side the region where all characteristics are outgoing. The difference sten-
cils are one-sided at the inner boundary, and no boundary conditions are
explicitly applied. Testing various locations we find that placing the inner
boundary at 1.1M gives reasonable results for the resolutions we are able to
use, �x = �y = �z = M/5, M/10, M/20. We are working to resolve this
inconsistency in our code by using coordinate systems that conform to the
horizon’s geometry.

We performed numerical experiments with the outer boundary at three
different locations, 5M , 10M and 15M . Boundary conditions for the outer
boundary are applied using the orthogonal projection technique referenced
above, by “freezing” the incoming characteristic modes. That is, their time
derivative is set to zero through an orthogonal projection. This makes use
of the fact that one knows that the continuum, exact solution is actually
stationary. While this would not be useful in the general case, as we shall see,
even in such a simplified case the constraint manifold seems to be unstable.
We are currently working on extending the boundary treatment to allow for
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constraint-preserving boundary conditions and studying the well posedness
of the associated initial-boundary value problem.

Having set up consistent initial and boundary data, in a second order
accurate implementation using the techniques mentioned in Sect. 2, we now
concentrate on simulating a stationary black hole space-time. As we will
see below, even in this simple system, one encounters difficulties to evolve
the system for long times. In particular, as has been illustrated in several
occasions, the length of time during which a reliable numerical solution is
obtained varies considerably depending on the values of the free parameters
in the formulation. These parameters play no role at the constraint surface;
however, off this constraint surface, these parameters have a sensible impact.
Hence, at the numerical level – where generic data is only approximately at
this surface -, it is necessary to adopt preferred values of these parameters.
These, in turn, will depend not only on the physical situation under study but
also on the details of the particular implementation (order of convergence,
etc). As we argued in Sect. 2, the constraint minimization method provides a
practical way to adopt these parameters. We next illustrate this in numerical
simulations of Schwarzschild space-time.

Testing Constraint Minimization. We concentrate here on black hole
simulations performed using the symmetric hyperbolic formulation with two
constraint functions. The single function family and its disadvantages for
constraint minimization are discussed in [33].

Black Hole Numerical Results. As a first attempt to numerically inte-
grate the Einstein equations, one could simply fix the parameters η and γ to
constant values. Lacking knowledge of preferred values for these parameters
we might simply set η = 0 and γ = 0. Evolutions of the Schwarzschild space-
time for these parameter choices, however, show that the solution is quickly
corrupted, and the solution diverges. Figure 5 shows the error in the numer-
ical solution with respect to the exact solution for three resolutions. While
the code converges, the error at a single resolution grows without bound as
a function of time.

We now apply the constraint minimization technique to evolutions of a
Schwarzschild black hole. The constraint functions η(t) and γ(t) will now vary
in time, and both will be used to control the constraint growth. With two
functions we can attempt to minimize changes in the functions themselves.
This is advantageous because smoothly varying functions seem to yield better
numerical results. Thus, η(t) and γ(t) are chosen at time step n+1 to minimize
the quantity

� := [η(n+ 1) − η(n)]2 + [γ(n+ 1) − γ(n)]2 . (55)

Ṅ is nonlinear in γ but linear in η, allowing one to solve for η such that
Ṅ = −aN ,
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Fig. 5. Two-constraint-function family, with fixed values γ = 0 = η, inner and
outer boundaries at 1.1 M and 5 M , respectively

η =
−(aN + Ihom + Iγγ)(1 + 2γ) + 2γIχ

Iη(1 + 2γ) + γIχ
(56)

where, as in Sect. 3, a is given by (14). γ is chosen from some arbitrary,
large interval. The corresponding η given by (56) is computed, and the pair
(η, γ) that minimizes � defined in (55) is chosen. γ and η may be freely
chosen, except that γ �= −1/2, giving two “branches”: γ always larger than
−1/2, and γ always smaller than −1/2. We have only explored the γ < −1/2
branch using the seed values η = 0, γ = −1. In order to keep the variation of
the parameters between two consecutive timesteps reasonably small, we have
needed to set the tolerance value for the constraints energy roughly one order
of magnitude larger than the initial discretization error, and na to either 102

or 103. This means that the constraints’ energy, though in a longer timescale,
will still grow.

The outer boundary is first placed at 5M . Figure 6 shows the energy of
the constraints and the error with respect to the exact solution. The corre-
sponding constraint functions are shown in Fig. 7. The large variation in the
functions near the end of the run appears to be a consequence of other grow-
ing errors. In Fig. 8 the minimization is stopped at 750M , and the functions
are fixed to η = −1.88, γ = −1.00 for the remainder of the run. The solution
diverges at approximately the same time.

Another measure of the error in the solution is the mass of the apparent
horizon, as shown in Fig. 9. After some time, the mass approximately settles
down to a value that is around 1.009M , which corresponds to an error of the
order of one part in one thousand. For the higher resolution, the apparent
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Fig. 6. This figure shows the constraint energy and the error with respect to the
exact solution. Dynamic minimization is done with boundaries at 5 M , �x = M/5,
T = 10−3, and na = 103
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Fig. 7. This figure shows the constraint functions for the run described in Fig. 6

horizon mass at late times becomes indistinguishable from 1M , given the
expected level of discretization errors.

The outer boundary is now placed at 15M . Figure 10 shows results for
data equivalent to those discussed for Fig. 6. The initial discretization value
for the energy is 7.6459 × 10−6, and T = 10−5, na = 100 was used. The
minimization of the constraint-functions is stopped at 450M , at which point
the constraint-functions are approximately constant, and equal to

η = −1.35 × 10−1 , γ = −3.39 . (57)
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Fig. 8. Same as previous figure, but keeping the constraint-functions constant after
750 M . The figure compares the resulting energy for the constraints with that of
the previous figure (shown at late times only, since because of the setup the runs
are identical up to t = 750 M)
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Fig. 9. This figure shows the black hole mass calculated from the apparent horizon
with dynamic constraint-function values. The higher resolution simulation ran out
of computing time. The apparent horizons were found using Thornburg’s apparent
horizon finder [36]

Figure 10 shows that the dependence of the lifetime on the location of the
outer boundaries is not monotonic, as for this case the code runs for, roughly,
1000M , while with boundaries at 10M and 5M it ran for around 700M ,
and 800M , respectively. A detailed analysis of such dependence would be
computationally expensive and beyond the scope of this work, and may even
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Fig. 10. Dynamic minimization done with boundaries at 15 M , �x = M/5, T =
10−5, and na = 102. The constraint-functions are constant for t ≥ 450 M , where
they are η = −0.135, γ = −3.389. Thus, the constraint functions do not respond
when the code is about to crash

depend on the details of the constraint minimization, such as the values
for T and na. However, comparing Fig. 5 with Figs 6–9, we see that the
constraint minimization considerably improves the lifetime of the simulation,
as expected.

4 Final Words

We have chosen two problems to illustrate both the power of numerical sim-
ulations of Einstein’s equations and some of the difficulties encountered in
obtaining accurate numerical solutions. This is especially relevant for black
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hole systems, where different poorly understood issues coupled to lack of
sufficient computational power make it much more difficult to advance at a
sustained pace towards the final goal of producing a reliable description of a
binary black hole system. However, it is clear that that goal outweighs these
difficulties. As the bubble problem illustrates, a robust implementation was
not only key to responding to open questions but also proved to be the way to
observing other phenomena not previously considered. Not only did it show
that a priori possible way to violate cosmic censorship is invalid, but it also
revealed the existence of critical phenomena, which, in turn, can be used to
shed further light on the stability of black string systems [32].

Fortunately, a substantial body of work in recent years has begun to
address a number of these questions. A better understanding of the initial
boundary-value problem in general relativity, advances in the definition of
initial data and gauge choices coupled to several modern numerical techniques
are having a direct impact on current numerical efforts. It seems reasonable
to speculate that if this trend continues, the ultimate goal will be within
reach in a not-too-distant future.
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Maria Babiuc1, Béla Szilágyi1, Jeffrey Winicour1,2

1 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh,
PA 15260, USA
maria@einstein.phyast.pitt.edu

bela@einstein.phyast.pitt.edu
2 Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, 14476 Golm,

Germany
jeff@einstein.phyast.pitt.edu

Abstract. The main goal of numerical relativity is the long time simulation
of highly nonlinear spacetimes that cannot be treated by perturbation theory.
This involves analytic, computational and physical issues. At present, the ma-
jor impasses to achieving global simulations of physical usefulness are of an ana-
lytic/computational nature. We present here some examples of how analytic insight
can lend useful guidance for the improvement of numerical approaches.

1 Introduction

The main goal of numerical relativity is the long time simulation of highly
nonlinear spacetimes that cannot be treated by perturbation theory. There
are three elements to achieving this:

(1) Analytic issues, such as well-posedness, constraints, boundary conditions,
linear stability, gauge conditions and singularity avoidance.

(2) Computational issues, such as evolution and boundary algorithms, nu-
merical stability, consistency, spacetime discretization and numerical dis-
sipation.

(3) Physical issues, such as simulation of the desired global spacetime, ex-
traction of the radiation from an isolated system, the proper choice of
initial data, long timescale evolutions tracking many orbits of an inspi-
raling binary.

The correct treatment of the physical issues introduces severe global prob-
lems. For instance, long term simulations are needed to flush out the spurious
gravitational radiation contained in the initial data for the gravitational field
of a binary black hole so that a physically relevant waveform can be extracted.
Furthermore, extraction of the waveform requires a compactified grid extend-
ing to null infinity, or some alternative approximation based upon an outer
boundary in the radiation zone.
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At present, the major impasses to achieving such global simulations are of
an analytical/computational nature. We present here some examples of how
analytic insight can lend useful guidance for the improvement of numerical
approaches.

2 Waves

The prime physical objective is to compute the gravitational waves emanat-
ing from a compact source. We begin by introducing some underlying math-
ematical and computational problems in terms of two examples of scalar
wave propagation. Both of these examples are chosen because they have a
direct analogue in general relativity and illustrate computational problems
that arise because of exponentially growing modes in an analytic problem
which is well-posed.

2.1 Unbounded Exponential Growth

First, consider a nonlinear wave propagating in Minkowski space according
to

ηαβ∂α∂βΦ− 1
Φ
ηαβ(∂αΦ)(∂βΦ) = 0 = Φηαβ∂α∂β logΦ . (1)

Although this nonlinear equation arises from a linear wave equation for logΦ,
it is a remarkably accurate model for some of the problems that occur in
numerical relativity. In order to simplify the problem, we first impose periodic
boundary conditions so that the evolution takes place in a 3-torus T 3, i.e. on
a boundary free manifold. For Φ > 0 the Cauchy problem for this system is
well-posed. Furthermore, the linear superposition logΦ1 + logΦ2 of solutions
to the linear wave equation correspond to the solution Φ1Φ2 of the nonlinear
problem.

A nonsingular solution of this system is the wave

Φ = 1 + F (t− z) , (2)

where F > −1. Suppose we try to simulate this solution numerically. If
numerical error excites an exponentially growing mode of this system then
noise in this mode will eventually dominate the wave being simulated. For the
linear wave equation there are no such exponential modes. But this nonlinear
system admits the solutions

Φλ = eλt(1 + F (t− z)) , (3)

for arbitrary λ.
Thus, although we have a well-posed initial value problem whose principle

part is the Minkowski wave operator, the simulation of a simple traveling
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wave is complicated by the existence of neighboring solutions which grow
exponentially in time. Numerical error will excite these exponentially growing
modes and eventually dominate the traveling wave we are attempting to
simulate. You might ask: Why not choose logΦ as the evolution variable?
This would clearly solve all numerical problems. As we have already said,
we have chosen this example because it arises in numerical relativity where
there is no analogous way to take the logarithm of the metric. But there are
indirect ways to model the derivative of a logarithm, analogous to grouping
terms according to Φ−1∂Φ and rewriting the nonlinear wave equation (1) as

ηαβ∂α

(
1
Φ
∂βΦ

)
= 0 . (4)

This indeed works for the scalar field, as illustrated in Fig. 2. (See the dis-
cussion of finite difference methods in Sect. 3.) We will come back to the
gravitational version of this problem but first we give another example which
illustrates a similar complication with the initial-boundary value problem.

We base this example on the initial-boundary value problem (IBVP) for
this nonlinear scalar field in the region −L ≤ z ≤ L obtained by opening up
the 3-torus to T 2 ×R. We consider the simulation of a traveling wave packet
Φ = 1 + F (t − z) > 0 with the Neumann boundary condition ∂zΦ|z=±L =
∂zF |z=±L . The wave packet gets the correct Neumann boundary data for
it to enter the boundary at z = −L, propagate across the grid and exit the
boundary at z = +L .

In the process, numerical noise will be generated. There are solutions of
the system of the form

Φε = ε2et/ε

(
1 + f(t− z)

)
, (5)

for arbitrary ε > 0. Normally, if a scalar field admitted such solutions we
could infer that the corresponding Cauchy problem was ill-posed by arguing
(following Hadamard) that the solution Φ0 = 0 has vanishing Cauchy data
and that the neighboring solutions Φε have unbounded size for any t > 0 .
However, the above Cauchy problem is well-posed because the initial data
must satisfy Φ > 0 .

After the wave packet has crossed the grid, the remnant numerical noise
gets homogeneous Neumann data ∂zΦ|z=±L = 0 . Thus it is reflected off the
boundaries and trapped in the simulation domain where it can grow expo-
nentially. The noise is generated while the wave packet is traveling across the
grid. The short wavelength modes can be controlled by introducing numeri-
cal dissipation. But the long wavelength modes cannot be damped without
the danger of damping the signal. Just as in the case of periodic boundary
conditions, numerical error can excite exponential modes that destroy the
accuracy of a simulation in the case of Neumann boundary conditions.

You might ask: Why use Neumann boundary conditions? The Sommer-
feld boundary condition (∂t±∂z)Φ|z=±L = 0 does not admit such modes and
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moreover it propagates numerical noise off the grid. The answer to that ques-
tion has to wait until we have discussed the constraint equations of general
relativity.

The problem with using Neumann boundary conditions is not of ana-
lytic origin. The problem is of a numerical nature. Whereas the signal gets
the correct inhomogeneous boundary data to propagate it off the evolution
domain, the noise gets the left-over homogeneous data and gets trapped in
exponentially growing modes.

The lesson here is that it is preferable to use Sommerfeld type boundary
conditions, not for physical or mathematical advantage but for numerical
advantage. A Sommerfeld boundary condition doesn’t solve all the problems.
Even though a homogeneous Sommerfeld condition carries energy out of the
evolution domain, it does not in general give the physically correct outer
boundary condition for an isolated system. For a nonlinear system such as
general relativity, one would need an inhomogeneous Sommerfeld condition
whose boundary data could only be determined by matching to an exterior
solution. But numerically a Sommerfeld condition has the great advantage of
allowing the noise to escape through the boundary. Unfortunately, in present
numerical relativity codes, Sommerfeld boundary conditions are inconsistent
with the constraints, which we will discuss later.

2.2 Moving Boundaries

Another mechanism by which a reflecting boundary condition can introduce
exponential modes is the repetitive blue shifting off moving boundaries. This
can even happen for a linear wave propagating between two plane boundaries
in Minkowski space. The boundaries can effectively play ping-pong with a
wave packet by arranging the boundary motion to be always toward the
packet during reflection.

Let x̂α = (t̂, x̂, ŷ, ẑ) be inertia coordinates, with the reflecting boundaries
in the (x̂, ŷ) plane. Under reflection, functional dependence of a wave packet
traveling in the positive ẑ-direction changes according to

Φ(t̂− ẑ) → Φ(e2α(t̂+ ẑ)) , (6)

where the speed of the reflecting wall is

v = tanhα . (7)

After many reflections the energy in the wave grows by a factor e4αT , where
T is measured in units of the crossing-time between reflections.

It is instructive to reinterpret this experiment from a numerical relativity
viewpoint where the spatial coordinates of the boundaries have fixed grid
values. For that purpose, we consider the well-posedness of the IBVP for the
linear wave equation
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gαβ∂α∂βΦ = 0 (8)

in a general background spacetime with non-constant metric gαβ . Again let
the evolution domain be the region −L ≤ z ≤ L .

Most of the mathematical literature on well-posedness of the IBVP is
based upon symmetric hyperbolic systems in first derivative form [1–4]. We
achieve this for the wave equation by introducing auxiliary variables u =
(Φ, ∂αΦ). Standard results then imply a well posed IBVP for a homogeneous
boundary condition of the matrix form Mu = 0 provided that

– the resulting energy flux normal to the boundary has the dissipative prop-
erty

Fn(u) ≥ 0 , (9)

– M has maximal rank consistent with this dissipative property, and
– M is independent of u .

In the present case, the energy flux is determined by the energy momen-
tum tensor for the scalar field. The flux normal to the boundary at z = +L
is

Fn = −nα(∂tΦ)∂αΦ (10)

where nα = gzα/
√
gzz is the unit normal to the boundary.

The dissipative condition can be satisfied in a variety of ways. The choice

∂tΦ = 0 (11)

leads to a homogeneous Dirichlet boundary condition, and the choice

nα∂αΦ = 0 (12)

leads to a homogeneous Neumann boundary condition. Homogeneous Dirich-
let and Neumann boundary conditions are limiting cases for which Fn = 0 ,
i.e. there is no energy flux across the boundary and signals are reflected.
Between these limiting cases, there is a range of homogeneous boundary con-
ditions with Fn > 0 of the form nα∂αΦ + P∂tΦ = 0 , where P > 0 . Of
particular interest is the Sommerfeld-like case where the derivative lies in an
outgoing characteristic direction.

The IBVP for the scalar wave equation is well-posed for any of these
maximally dissipative boundary conditions. Furthermore, by consideration
of the symmetric hyperbolic equation satisfied by u − q(xα) , where q has
explicitly prescribed space-time dependence, the well-posedness of the IBVP
with the homogeneous boundary condition Mu = 0 can be extended to the
inhomogeneous form M(u − q(t, x, y)) = 0 , with freely assigned boundary
data q . By using such boundary data, a Neumann or Dirichlet boundary
condition can be used to model a wave which is completely transmitted across
the boundary with no reflected component, at least at the analytic level.

Note the important feature that the free boundary data for the scalar field
consist of one function of three variables in contrast to two functions for free
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Cauchy data. As we shall see, this is the major complication in formulating
a constraint preserving boundary condition for a well-posed IBVP in general
relativity.

Now consider the simulation of a linear scalar wave in the flat background
metric which results from the transformation t̂ = t , x̂ = x , ŷ = y , ẑ = z +
A sinωt from inertial coordinates x̂α . In these xα coordinates, the boundaries
at z = ±L are oscillating relative to the inertial frame, as indicated by the
“shift” gzt = −Aω cosωt . For our simulation, we prescribe initial data Φ0 =
∂tΦ0 = 0 and either the appropriate Neumann or Dirichlet boundary data
q−L(t) and q+L(t) for a wave packet which enters the boundary at z = −L ,
travels across the domain and leaves the boundary at z = +L . A second
order accurate code would simulate this signal with O(∆2) error in the grid
displacement ∆ . Thus Φ = O(∆2) after the packet has traversed the domain.
However, this remnant error gets homogeneous boundary data. Although, as
just discussed, the normal energy flux associated with homogeneous Dirichlet
or Neumann data vanishes in the rest frame of the boundary, in the x̂α inertial
frame the boundary is moving and the noise can be repeatedly blue shifted,
resulting in an exponential increase of energy.

One way to eliminate this problem would be to deal with coordinate
systems in which the shift vanishes, at least at the boundary. However, this
would rule out many promising strategies for dealing with binary black holes,
e.g. the use of co-rotating coordinates or of generalized Kerr-Schild coordi-
nates. But especially in a nonlinear problem such as general relativity, the
excitation of exponential modes can rapidly destroy code performance.

3 General Relativity: Harmonic Evolution

The previous examples of scalar waves show that even if the underlying an-
alytic problem is well-posed and even if the numerical simulation converges
to the analytic solution, the existence of exponentially growing modes in
the analytic system can effectively invalidate long term code performance.
In general relativity, coordinate freedom is a further complication which can
introduce rapidly growing modes that are an artifact of gauge pathologies. In
order to illustrate computational problems that are not a trivial consequence
of gauge, we consider the harmonic formulation of Einstein’s equations. Al-
though no coordinates can guarantee complete avoidance of gauge problems,
harmonic coordinates have several advantages for investigating the interface
between numerical and analytic problems in general relativity:

– Small number of variables
– Small number of constraints (4 harmonic conditions)
– Einstein’s equations reduce to quasilinear wave equations
– Well-posed Cauchy problem [5]
– Symmetric hyperbolic formulation [6]
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– Global asymptotically flat solutions for weak Cauchy data [7]
– Well-posed homogeneous IBVP [8]

A numerical code for evolving Einstein’s equations, the Abigel code [8],
has been based upon a generalized version of harmonic coordinates satisfying
the curved space wave equation

Hα :=
√
−g�gx

α = ∂µ(
√
−ggµν∂νx

α) = H̃α(xβ , gρσ) , (13)

where H̃α are harmonic source terms. These harmonic source terms do not
affect any of the analytic results regarding well-posedness but, in principle,
they allow any spacetime to be simulated in some generalized harmonic co-
ordinate system. The harmonic reduced evolution equations are written in
terms of the metric density γµν =

√−ggµν whose ten components obey qua-
silinear wave equations

γαβ∂α∂βγ
µν = Sµν , (14)

where Sµν contains nonlinear first-derivative terms that do not enter the
principal part. The harmonic conditions Cµ := Hµ − H̃µ = 0 are the con-
straints on this evolution system which are sufficient to ensure that Einstein’s
equations are satisfied. Except where noted, we set H̃µ = 0 to simplify the
discussion but all results generalize to include nonvanishing gauge source
terms. For details concerning the formulation and its implementation see [8].

By virtue of the evolution equations, the harmonic constraints satisfy a
homogeneous wave equation of the form

γαβ∂α∂βC
µ +Aµα

β ∂αC
β +Bµ

βC
β = 0 . (15)

Thus, in the domain of dependence of the Cauchy problem, the solution
Cµ = 0 is implied by standard uniqueness theorems provided the system is
initialized correctly.

A well-posed evolution system is a necessary but not sufficient ingredient
for building a reliable evolution code. Code performance can be best tested
by simulating an exact solution and measuring an error norm. The error
should converge to zero in the continuum limit as the grid spacing ∆ shrinks
to zero. In testing evolution codes it is desirable to first eliminate effects of
boundary conditions by imposing periodicity in space, which is equivalent
to carrying out the simulation on a 3-torus without boundary. A suite of
toroidal testbeds for numerical relativity has been developed as part of the
Apples with Apples project [9, 10]. The convergence and stability of several
codes [9, 11, 12], including the Abigel code [9], has been demonstrated using
this test suite.

One testbed is the Apples with Apples periodic gauge wave with metric

ds2 = Φ(−dt2 + dz2) + dx2 + dy2, (16)

where
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Φ = 1 +A sin
(

2π(t− z)
2L

)
. (17)

It is obtained from the Minkowski metric ds2 = −dt̂2 + dx̂2 + dŷ2 + dẑ2 by
the harmonic coordinate transformation

t̂ = t− AL
π cos

(
2π(t− z)

2L

)
,

ẑ = z + AL
π cos

(
2π(t− z)

2L

)
,

x̂ = x ,
ŷ = y .

(18)

Figure 1 shows some snap shots of a gauge wave simulation carried out
with an early version of the Abigel code. The time dependence of the error
shows exponential growth of the form

E ∼ ∆2ψ(t, z)eλt. (19)

Fig. 1. Snap shots of a gauge wave simulation carried out with an early version of
the Abigel code. The code is stable and the error converges to zero at second order
in grid spacing ∆ but after a few crossing times the error is too large to make the
results useful
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Here ψ is a well-behaved function which is almost identical in shape to the
signal Φ. As a result, the error cannot be dissipated by standard techniques
for dealing with short wavelength noise. The exponential growth originates
in exact analogy with our example for the nonlinear scalar wave equation
(1). In fact, the metric (16) is a flat solution of the Einstein equations in
harmonic coordinates for any Φ(t, z) which satisfies the nonlinear wave equa-
tion (1). The general solution is Φ = ef(t−z)+g(t+z). In particular, there are
exponentially growing harmonic gauge waves

ds2 = Φλ(−dt2 + dz2) + dx2 + dy2, (20)

where

Φλ = eλt

(
1 +A sin

(
2π(t− z)

2L

))
, (21)

which lie arbitrarily close to the gauge wave being simulated. Thus numerical
error inevitably excites exponential modes which eventually dominate the
simulation of the gauge wave. The practicality of code performance depends
on the timescale of this exponential growth.

Although the Abigel code is stable, convergent and based upon a well-
posed initial value problem, like any other code it is subject to the excitation
of exponential modes in the underlying analytic system. Certain numerical
techniques greatly improve its accuracy in simulating the gauge wave:

– Expressing the equations into flux conservative form, an idea from compu-
tational fluid dynamics which was introduced into general relativity by the
Palma group [16].

– Summation by parts, introduced into general relativity by the LSU group
[12], which at the level of linearized equations leads to energy estimates
for the semi-discrete system of ODE’s in time which arise from spatial
discretization.

– Nonlinear multipole conservation, which suppresses the excitation of long
wavelength exponential modes by grouping the troublesome nonlinear
terms in a way that enforces global semi-discrete conservation laws (or
approximate conservation laws).

The semi-discrete multipole technique (being introduced here) provides an
excellent example of how analytic insight into the source of a numerical prob-
lem can be used to design a remedy. As we will show, various combinations
of these three techniques lead to dramatic improvement in gauge wave sim-
ulations. Other numerical methods based upon enforcing or damping the
constraints are not crucial for the gauge wave problem but can be important
for simulations of curved spacetimes.

An essential ingredient in any code is the method used to approximate
derivatives. The Abigel code treats the quasilinear wave equations (14) as
first differential order in time and second order in space. This allows use of
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explicit finite difference methods to deal with the mixed space-time deriv-
atives introduced by the “shift” term in the wave operator while avoiding
the artificial constraints that would be introduced by full reduction to a first
order system. On a grid with spacing ∆, the natural finite difference rep-
resentation for the the first and second spatial derivatives are the centered
approximations

∂zF (z) → DF (z) =
F (z +∆) − F (z −∆)

2∆
(22)

and

∂2
zF (z) → D(2)F (z) =

F (z +∆) − 2F (z) + F (z −∆)
∆2

. (23)

These formulae were used in the simulation labeled TIGHT in Fig. 3. Al-
though the code was tested to be stable and convergent with second order
accuracy, the excitation of the exponentially growing mode of the analytic
problem limits accurate simulations to about 10 crossing times on a reason-
ably sized grid.

In order to exaggerate nonlinear effects, the simulations shown in Fig. 3
were carried out for a highly nonlinear gauge wave with amplitude A = .5,
on a scale where the metric is singular for A = 1. (The standard Apples
with Apples tests specify amplitudes of A = .01 and A = .1.) Problems with
exponential modes do not appear for small amplitudes simulations in the
linear domain. One contributing factor to the exponential growth is that the
tight 3-point stencil (23) for the second derivative does not lead to an exact
finite difference representation of the integration by parts rule necessary to
establish energy conservation, which is the main idea behind the summation
by parts (SBP) method. But this is only part of the story since standard SBP
techniques only apply to linear systems.

It is instructive to examine how these ideas extend to the second derivative
form of the nonlinear wave equation (1) which underlies the gauge wave
problem. This will illustrate in a simple way how flux conservative equations,
SBP and multipole conservation can combine to suppress excitation modes
in the analytic problem. The model scalar problem is effective in isolating the
difficulties underlying a full general relativistic code, in addition to allowing
efficient computational experimentation.

We carry out the analysis for waves traveling with periodic boundary
conditions in one spatial dimension. The extension to three dimensions is
straightforward but notationally more complicated. The theory regarding
well-posedness of hyperbolic systems is based upon the principal part of the
equations. For that reason, we first consider the linear wave equation

∂α∂
αΦ = −∂2

t Φ+ ∂2
zΦ = 0 . (24)

The energy associated with this wave can be related to the conserved integral

I = [Φ1, Φ2] =
∮

(Φ1∂
µΦ2 − Φ2∂

µΦ1)dVµ (25)
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by choosing Φ1 = Φ and Φ2 = ∂tΦ . For the case of periodic boundary condi-
tions on the interval 0 ≤ z ≤ L ,

I =
∫ L

0

(
(∂tΦ)2 − Φ∂2

t Φ

)
dz . (26)

The integration by parts by parts rule
∫ L

0

(
− ∂z(Φ∂zΦ) + (∂zΦ)2 + Φ∂2

zΦ

)
dz = 0 , (27)

applied to a periodic interval, then supplies the key step in using the wave
equation to relate I to the positive definite energy

I = E =
∫ L

0

(
(∂tΦ)2 + (∂zΦ)2

)
dz . (28)

In order to obtain a discrete version of the integration by parts identity
(27), we introduce a uniform grid zi , 0 ≤ i ≤ N , with spacing ∆ and represent

∫ L

0

Fdz → ∆

N∑

0

fi+1/2 (29)

where

fi+1/2 =
F (zi) + F (zi+1)

2
. (30)

In addition we represent derivatives at the midpoints by the centered approx-
imation

∂zF (zi +∆/2) → f ′
i+1/2 =

F (zi+1) − F (zi)
∆

(31)

so that periodic boundary conditions imply

∫ L

0

∂zFdz → ∆

N∑

0

f ′
i+1/2 = F |L0 = 0 . (32)

This ensures the semi-discrete monopole conservation law

∂2
t

∮
Φdz → 0 , (33)

which results from the flux conservative form of (24). Equation (33) controls
growth of the spatial average of Φ but not of its non-constant spatial Fourier
components which measure its gradient.

Energy estimates control the growth of the gradient of Φ. With the above
definitions, it is straightforward to check that

∂z(FG) − F∂zG−G∂zF → 0 . (34)
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As a result, the semi-discrete version of the integral identity (27) is satisfied
if the second derivative term is represented as a product of first derivatives.
For the linear wave equation this results in the semi-discrete conservation law

∂tE → 0 . (35)

In order to implement SBP in a code such as the Abigel code, which is
second differential order in space with the fields represented by their values
on grid points, and not on mid-points, the above results can be applied by
treating the mid-points for even numbered grid points as the odd-numbered
grid points, and vice versa. This results in the widened finite difference rep-
resentation for the second derivative

∂2
zF (z) → D2F (z) = DDF (z) =

F (z + 2∆) − 2F (z) + F (z − 2∆)
4∆2

, (36)

as opposed to the tight stencil (23). Fig. 2 shows the remarkable improve-
ment in long term accuracy obtained in the simulation of a non-linear wave
satisfying (1). (Numerical dissipation has been used to damp short wave-
length instabilities triggered by the loose coupling between even and odd
grid points.) The curves labeled TIGHT are obtained using the standard
stencil (23). They show exponential growth on a scale of ≈ 10 grid crossing
times. The curves labeled SBP are obtained using the stencil (36) consistent
with SBP. This change of stencil suppresses growth of long wavelength ex-
ponential modes so that accurate simulations of ≈ 1000 crossing times are
possible.

Summation by parts only has general applicability to linear equations,
although the technique extends in an approximate sense to the nonlinear
domain. Other approaches can also be successful for nonlinear problems, es-
pecially if the troublesome nonlinear terms can be identified. In the case of
the nonlinear equation (1), these terms can be incorporated in the principal
part by reformulating the equations in the flux conservative form

∂α

(
ηαβ 1

Φ
∂βΦ

)
= 0 , (37)

with the subsequent reduction to the first order in time system

∂tΦ = ΦQ , (38)

∂tQ = ∂z

(
1
Φ
∂zΦ

)
. (39)

Many choices of spatial discretization of this flux conservative system lead to
an exact semi-discrete version of the monopole conservation law

∂t

∫ L

0

Q = 0 . (40)
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Fig. 2. A comparison of the various evolution algorithms used to evolve the non-
linear wave equation (1). The tests are based on the sine wave solution (17), with
amplitude A = .5, simulated on a grid of N = 100 points with a time-step of
∆t = ∆z/4. The graph shows the �∞ norm of the error

We consider the two choices

∂z(
1
Φ
∂zΦ)|i →

1
2∆

(
1
Φ
Φ′
)

i+1

− 1
2∆

(
1
Φ
Φ′
)

i−1

(41)

and

∂z(
1
Φ
∂zΦ)|i →

1
∆

(
1
Φ
Φ′
)

i+1/2

− 1
∆

(
1
Φ
Φ′
)

i−1/2

. (42)

As a result of either of these discretizations, the initial data determine the
conserved value of the monopole moment

∫ L

0
Qdz and the excitation of the

exponential modulation (3) is thereby frozen out of the numerical evolution.
In this way a tight 3-point stencil (42) can be used, as opposed to the wide
5-point stencil (41) (and the concomitant numerical dissipation) required by
SBP for the second order system. The curve labeled TIGHT-MON in Fig. 2
shows how long term accuracy is dramatically enhanced by this technique,
without use of numerical dissipation. The curve labeled SBP-MON shows
that, in this case, no additional improvement is gained when monopole con-
servation is combined with SBP.

These numerical techniques introduced for the model scalar problem were
formulated in a way that could be readily taken over to the gravitational
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case. Although the Einstein equations can neither be linearized by taking
the “logarithm of the metric” nor written in a completely flux conservative
form analogous to (37), there are various ways to group derivatives which
decouple the Jacobian transformation that generates the exponential mode
in the gauge wave metric (20). One example is the grouping

gαµ∂ρgµβ = (δα
t δ

t
β + δα

z δ
z
β)

1
Φλ

∂ρΦλ , (43)

for which expression of the principal part of the Einstein equation in the form
∂ρ(gαµ∂ρgµβ) leads to the semi-discrete conservation laws

∂t

∫ L

0

gαµ∂tgµβdz → 0 (44)

for the gauge wave. The conserved quantities are comprised of multipoles of
monopole (the spatial trace) and quadrupole (the trace-free part) type.

The advantage of enforcing these conservation laws is exhibited in Fig. 3.
Comparison of Figs. 2 and 3 shows that SBP and multipole conservation lead
to almost identically beneficial results in simulating the gauge wave as in
simulating the nonlinear scalar wave. The standard 3-point stencil (TIGHT)
again excites exponentially growing error on the order of 10 crossing times but

Fig. 3. A comparison of the various evolution algorithms used to evolve the har-
monic Einstein equations. In these tests the code evolved flat spacetime in the gauge
defined by (18), with amplitude A = .5. The size of the grid was N = 100, with
a time-step of ∆t = ∆z/4. The graph shows the �∞ error norm of the gzz metric
component
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accurate evolutions for over 1000 crossing times are attained either with SPB
or with a 3-point stencil embodying multipole conservation (TIGHT-MULT).

Whether objectionable gauge modes can be decoupled so effectively in
a more general problem is an interesting question. However, all the above
numerical techniques, which lead to excellent code performance for the gauge
wave, are of a universal nature that can be adopted for the simulation of
a general spacetime by a general code. Since most simulations contain a
weak field region, such as the far field region outside a black hole, these
techniques might in fact be necessary in order to avoid excitation of local
versions of exponential Minkowski gauge modes. Figure 4 shows how these
methods extend to the challenging simulation of the gauge wave with shift

ds2 = −(1−A sinα)dt2 + 2A sinαdtdz+ (1 +A sinα)dz2 + dx2 + dy2 , (45)

with α = π(t+ z)/L. The simulation was carried out with periodic boundary
conditions and amplitude A = .5, so that the grid has an effective velocity of
half the speed of light. Again there are exponentially growing gauge waves,

ds2λ = −(eλt−A sinα)dt2+2A sinαdtdz+(eλt+A sinα)dz2+dx2+dy2 (46)

(for arbitrary λ), which satisfy these boundary conditions. These will trigger
a numerical instability unless their excitation is controlled by a conservation

Fig. 4. A comparison of the various evolution algorithms used to evolve the har-
monic Einstein equations. In these tests the code evolved the gauge wave metric
with shift defined in (45), with amplitude A = .5. The size of the grid was N = 100,
with a time-step of ∆t = ∆z/4
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law on the semi-discrete system. Remarkable improvement in long term per-
formance is achieved by implementing either SBP or the multipole algorithm.

These examples show what must be done, beyond having a stable, con-
vergent code, in order to achieve accurate long term simulations. Exponential
modes undoubtedly arise in a wide variety of systems with the examples pre-
sented here just the tip of the iceberg. Short wavelength modes arising from
discretization error can be suppressed by numerical dissipation. The long
wavelength modes exist in the analytic problem. This raises some key ques-
tions: Are there geometric clues to identify the origin of such long wavelength
exponential modes? What numerical or analytic techniques can be used to
suppress them?

4 The Harmonic IBVP

Given an evolution code on the 3-torus which is based upon a well-posed
Cauchy problem for Einstein’s equations and which is free of all numerical
problems, several things can go wrong in extending the evolution to include a
boundary. On the analytic side, the imposition of the boundary condition can
be ill-posed or it can lead to violation of the constraints or it can introduce
exponentially growing modes. On the numerical side, the finite difference
implementation of the boundary condition can be unstable or inaccurate. On
the physical side, the correct boundary data representing radiation (or the
absence of radiation) entering the system might not be known or it might
not be possible to extract the waveform of the outgoing radiation.

Here we examine the analytical and numerical issues for the harmonic
IBVP. The reduced evolution system consists of the quasilinear wave equa-
tions (14). Our discussion for nonlinear scalar waves show that the IBVP for
this system is well-posed for any maximally dissipative boundary conditions,
e.g. Dirichlet, Sommerfeld or Neumann.

Next consider the harmonic constraints Cµ. They satisfy the homoge-
neous wave equation (15). Thus we can formulate a well-posed IBVP for the
propagation of the constraints by imposing a maximally dissipative boundary
condition. Then, given that the constraints and their time derivative are satis-
fied by the initial data and that the constraints have homogeneous boundary
data, the uniqueness of the solution to the constraint propagation equations
would imply that the constraints be satisfied in the domain of dependence
of the IBVP. However, consistency between the boundary conditions for the
evolution variables and the homogeneous boundary conditions for the con-
straints is not straightforward to arrange.

For example, consider evolution in the domain z < 0 with boundary at
z = 0. In the tangential-normal 3 +1 decomposition xµ = (xa, z) intrinsic
to the boundary, a homogeneous Dirichlet condition on the constraints takes
the explicit form
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Cz = ∂aγ
za + ∂zγ

zz = 0 (47)
Ca = ∂bγ

ab + ∂zγ
az = 0 . (48)

A naive attempt to satisfy these conditions by boundary data on the evolution
variables would involve assigning both Dirichlet (tangential) and Neumann
(normal) conditions to γaz, which would be an inconsistent boundary value
problem.

One way to impose consistent constraint preserving boundary conditions
is based upon the well-posedness of the Cauchy problem. Consider smooth
Cauchy data which is locally reflection symmetric with respect to the bound-
ary at z = 0. Then in some neighborhood −L < z < L of the hypersurface
z = 0 the Cauchy problem is well-posed. On z = 0, the local reflection sym-
metry implies that the evolution equations satisfy

γza = 0
∂zγ

zz = 0
∂zγ

ab = 0 (49)

and that the constraints satisfy

Cz = 0
∂zC

a = 0 . (50)

It is straightforward (although algebraically complicated) to show for the
harmonic IBVP that the combination of Dirichlet and Neumann boundary
conditions (49) implies that the constraints satisfy the homogeneous bound-
ary conditions (50). Thus (49) provide homogeneous constraint preserving
boundary conditions for a well-posed harmonic IBVP.

Well-posedness of the IBVP extends to the case of “small” boundary
data, of the form M(u − q(xa)) = 0 discussed in Sect. 3, in the sense that
the prescribed data q is linearized off a solution with homogeneous bound-
ary data. However, the available mathematical theorems do not guarantee
well-posedness for finite boundary data. We describe below the major issues
regarding constraint preserving inhomogeneous boundary conditions for the
harmonic IBVP. For further details, see [8].

Part of the inhomogeneous boundary data which generalize (49) are as-
sociated with the gauge freedom corresponding to a boundary version of the
“shift”. By a harmonic coordinate transformation it is alway possible to set

γza = qa(xb)γzz (51)

at the boundary, where qa is freely prescribed data. The unit normal Nµ to
the boundary then defines the normal derivative

∂n :=
1
Nz

Nµ∂µ = ∂z + qa∂a (52)
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entering the Neumann boundary data, qzz = ∂nγzz and qab = ∂nγab, which
complete the inhomogeneous version of (49).

The boundary data q = (qa, qzz, qab) can be freely prescribed in a well-
posed IBVP for the reduced evolution system but they must be restricted to
satisfy (50) in order to ensure that the constraints are satisfied. The condition
Cz = 0 requires

qzz = −∂aq
aγzz . (53)

When the boundary shift −qa is nonzero, the second condition in (50) must
be restated in the form ∂nCa = 0, because the derivative ∂z is no longer
in the normal direction to the boundary. This condition is a restriction on
the data qab, which are closely related to the extrinsic curvature Kab of the
boundary. It requires that

√
−hDb(Kb

a − δb
aK) +

√
gzzKabC

b − gzz

2
Cb∂aq

b = 0 , (54)

where hab and Da are the metric and connection intrinsic to the boundary.
This equation can be recast as a symmetric hyperbolic boundary system
which determines the 6 pieces of Neumann data qab in terms of 3 free func-
tions, the free (gauge) data qa and the boundary values of γzz, γab and ∂zγ

za.
Solutions of reduced equations with this boundary data necessarily satisfy the
constraints. Unfortunately, the appearance of the quantities γzz, γab and
∂zγ

za complicates the well-posedness of the constrained IBVP since these
quantities cannot be freely specified but must be determined in the course of
the evolution.

Formally, the constraint preserving boundary data have the functional
dependence q = q(u, xa), which involves evolution variables u whose bound-
ary values cannot be freely prescribed. This complication has its geometric
origins in the fact that the boundary data (gauge quantities and extrinsic
curvature) do not include the intrinsic metric, as in the case of Cauchy data.
Because of the dependence of the constraint preserving boundary data on u,
the available theorems regarding well-posedness only apply to perturbations
of homogeneous data, where the background values of u can be explicitly
determined.

These constraint preserving boundary conditions have been implemented
in the Abigel code. Test simulations of the IBVP for the shifted gauge wave
(45) were carried out by opening one face of the 3-torus to form a T 2 × [0, 1]
manifold with boundary. Figure 5 shows the results reported for an early
version of the code [8]. The graphs indicate stability and and convergence but
there is also a growing error which eventually leads to a nonlinear instability.
One underlying cause of this error growth is the continuous blue shifting off
the moving boundaries, as discussed in Sect. 2. However, these tests were
carried out before semi-discrete conservation laws were incorporated into the
evolution algorithm so that a better understanding of the error must await
future test runs.
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Fig. 5. The �∞ norm of the finite-difference error γzz
e = γzz

ana − γzz
num, rescaled by

a factor of 1/∆2, for a gauge wave. The tests were carried out with an early version
of the Abigel code before semi-discrete conservation laws were incorporated. The
upper two (mostly overlapping) curves demonstrate convergence to the analytic
solution for a wave with amplitude A = 10−1 gridsizes 803 and 1203. We also
plot |H|∞, the �∞ norm of

√
(Ht)2 + δijHiHj , to demonstrate that convergence of

the harmonic constraints is enforced by the boundary conditions. The lower curve
represents evolution of the same gauge wave with A = 10−3 for 300 crossing times,
with gridsize 803
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5 Sommerfeld Alternatives

The examples presented here indicate a computational advantage in formulat-
ing boundary conditions in a manner such that numerical noise can propagate
off the grid for the case of homogeneous boundary data. To date, there ex-
ists only one well-posed formulation of the IBVP for general relativity that
allows this type of generalized Sommerfeld boundary condition. This is the
Friedrich-Nagy formulation [13] based upon a formulation of Einstein’s equa-
tions in which an orthonormal tetrad, the connection and the Weyl curvature
are treated as evolution variables. The gauge freedom in the theory is adapted
in a special way to the boundary so that boundary conditions need only be
imposed on the curvature variables. The critical feature of the formalism is
that the constraints propagate tangential to the boundary. This allows the
well-posedness of the IBVP for the reduced evolution system to be extended
to the fully constrained system. Unfortunately, this formulation has not yet
been implemented as a numerical code, partially because of its analytic com-
plexity and partially because it would require some infrastructure beyond
that existing in most present codes.

An important issue is whether this success of the Friedrich–Nagy sys-
tem in handling a Sommerfeld boundary condition is limited to formulations
that include the tetrad or the curvature among the basic evolution variables.
In linearized gravitational theory, there is a simple variant of the harmonic
formulation that has a well-posed IBVP, admits a Sommerfeld boundary
condition and has been successfully implemented computationally [15]. The
nonlinear counterpart consists of the evolution system

γαβ∂α∂βγ
ij = Sij , (55)

Hα := ∂tγ
tα + ∂jγ

jα = Ĥα(x, γ) , (56)

comprised of the wave equations (14) for the six spatial components γij
and propagation equations for the time components γtα. Alternatively, the
propagation equations could be reformulated as

∂tH
α = ∂tĤ

α (57)

in order to make the evolution system uniformly second differential order.
Well-posedness of the nonlinear Cauchy problem does not follow in any direct
way from standard theorems. An analysis of the principal part shows that
this naive harmonic system is only weakly hyperbolic, which opens the door
for lower derivative terms to produce instabilities [14].

It is instructive to investigate the performance of a code based upon this
weakly hyperbolic harmonic system by using the Apples with Apples testbed.
Figure 6 shows the results of the robust stability test, where a simulation
in the linear regime is carried out with random (constraint violating) initial
data. The results show an exponential rise in the violation of the Hamiltonian
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Fig. 6. The robust stability test for the weakly hyperbolic harmonic system. The
�∞ norm of the Hamiltonian constraint is plotted on a linear-logarithmic scale. All
specifications are in accord with the Apples With Apples test

constraint at a rate that increases with grid resolution, which eventually leads
to a code crash. This behavior is symptomatic of weakly hyperbolic systems
and presages possible problems in the nonlinear domain. The simulation of a
nonlinear gauge wave with shift, shown in Fig. 7, verifies such problems. These
problems do not appear for the nonlinear gauge wave without shift, as the
results shown in Fig. 8 indicate convergence. Also, as illustrated in Fig. 9,
with the addition of numerical dissipation, the Hamiltonian constraint no
longer grows exponentially in the robust stability test, although the constraint
violation still increases with grid resolution, indicating failure of the test.
Similar conclusions follow from the Apples with Apples Gowdy wave tests.

These results show that a full battery of tests are necessary in order
to establish reliable code performance. Otherwise, misleading information
about code performance can result. As history has shown in the case of ADM
evolution codes, weakly hyperbolic systems system cannot be expected to give
reliable long term performance in the presence of strong fields, which makes
them unsuitable for black hole simulations.

The Friedrich–Nagy system and the weakly hyperbolic harmonic system
represent two extremes of a dilemma facing code development in numerical
relativity. On one hand, the Friedrich–Nagy system has all the desired an-
alytic features but its complexity poses a barrier to code development. On
the other hand, the weakly hyperbolic harmonic system is simple and easily
implemented as an efficient code, but well-posedness is questionable. Should
you try to fix these simple systems or should you bite the bullet and de-
velop codes based upon formulations where a well-posed nonlinear IBVP has
been fully established? To date, the effort in numerical relativity has been
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Fig. 7. The nonlinear gauge wave with shift test for the weakly hyperbolic harmonic
system. The code crashes in less than a crossing time
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Fig. 8. The nonlinear gauge wave without shift test for the weakly hyperbolic
harmonic system, run in accord with the Apples With Apples specifications. The
convergence of the error is deceptive of code reliability

weighted heavily toward the simpler formulations. It is timely that some at-
tention be given to investigating whether the Friedrich–Nagy system can be
converted into a workable code. A useful starting point would be a linearized
version evolving on T 2×R, where the complications of the equations and the
boundary gauge would greatly simplify and would perhaps lead to a better
understanding of the essential elements of the approach. Most of the effort in
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Fig. 9. The robust stability test for the weakly hyperbolic harmonic system
with dissipation. As in Fig. 6, the Hamiltonian constraint is plotted on a linear-
logarithmic scale. The dissipation now kills the exponential growth but the growth
of constraint violation with resolution indicates that the code fails the test

the field can be expected to remain a compromise between these extremes, e.g.
the strongly hyperbolic harmonic system for which a Sommerfeld boundary
condition is not constraint preserving. In all such endeavors, a close working
combination of analytic and numerical insight can offer valuable guidance.
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